1
|
Vikrant K, Kim KH, Heynderickx PM, Boukhvalov DW. Titanium carbide MXene/anatase titanium dioxide-supported gold catalysts for the low-temperature oxidation of benzene in indoor air. J Colloid Interface Sci 2025; 695:137770. [PMID: 40339294 DOI: 10.1016/j.jcis.2025.137770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 04/27/2025] [Accepted: 04/30/2025] [Indexed: 05/10/2025]
Abstract
In the present study, the oxidative removal of benzene (model carcinogenic aromatic volatile organic compound (VOC)) from indoor air is investigated using titanium carbide (Ti3C2) MXene/anatase titanium dioxide (TiO2)-supported gold (Au) catalysts under dark and low-temperature (DLT: 30-90 °C) conditions. The reduction pre-treatment (catalyst labelled with the 'R' suffix) has been used to form metallic Au (Au0) nanoparticles and anatase TiO2 in the MXene structure. The relative ordering in the Au catalysts, if assessed in terms of room-temperature (RT) benzene (5 ppm) conversion (XB (%)) at 10,191 h-1 gas hourly space velocity, is found as: 0.5 %-Au/Ti3C2-R (85 ± 5.5 %) > 0.2 %-Au/Ti3C2-R (71 ± 1.8 %) ≈ 0.5 %-Au/Ti3C2 (71 ± 2.8 %) > 1 %-Au/Ti3C2-R (52 ± 5.8 %). The catalytic activity peaks at 0.5 wt% Au loading with reduction pre-treatment and is further enhanced by decreasing the flow rate, benzene concentration, and relative humidity (or by increasing the catalyst mass). The 0.5 %-Au/Ti3C2-R catalyst maintains stable benzene mineralization for 24 h time-on-stream (maximum tested reaction time) at RT without noticeable deactivation. Benzene oxidation on the 0.5 %-Au/Ti3C2-R surface proceeds through diverse reaction intermediates (e.g., phenolate, catecholate, o-, p-benzoquinone, formate, and carbonate). The adsorption of benzene and molecular oxygen (O2) occurs near the Au0 sites. Hydrogen first migrates from benzene to O2, forming an -OOH group attached to Au0. Subsequently, hydrogen transfers from benzene to -OOH, leading to the formation of water as the final product. The benzene ring is then unzipped to yield carbon dioxide through various reaction steps. The present work offers insights into developing Au catalysts for practical DLT control of indoor air pollutants.
Collapse
Affiliation(s)
- Kumar Vikrant
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul 04763, Republic of Korea.
| | - Philippe M Heynderickx
- Center for Green Chemistry and Environmental Biotechnology (GREAT), Ghent University Global Campus, 119-5 Songdo Munhwa-ro, Yeonsu-gu, Incheon 406-840, Republic of Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Danil W Boukhvalov
- College of Science, Institute of Materials Physics and Chemistry, Nanjing Forestry University, Nanjing 210037, China; Institute of Physics and Technology, Ural Federal University, Mira Street 19, 620002 Yekaterinburg, Russia
| |
Collapse
|
2
|
Uddin MM, Dip TM, Tushar SI, Sayam A, Anik HR, Aktar Arin MR, Talukder A, Sharma S. Triboelectric Nanogenerators for Self-Powered Degradation of Chemical Pollutants. ACS OMEGA 2025; 10:26-54. [PMID: 39829514 PMCID: PMC11740385 DOI: 10.1021/acsomega.4c07889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/10/2024] [Accepted: 12/12/2024] [Indexed: 01/22/2025]
Abstract
Environmental and human health is severely threatened by wastewater and air pollution, which contain a broad spectrum of organic and inorganic pollutants. Organic contaminants include dyes, volatile organic compounds (VOCs), medical waste, antibiotics, pesticides, and chemical warfare agents. Inorganic gases such as CO2, SO2, and NO x are commonly found in polluted water and air. Traditional methods for pollutant removal, such as oxidation, physicochemical techniques, biotreatment, and enzymatic decomposition, often prove to be inefficient, costly, or energy-intensive. Contemporary solutions like nanofiber-based filters, activated carbon, and plant biomass also face challenges such as generating secondary contaminants and being time-consuming. In this context, triboelectric nanogenerators (TENGs) are emerging as promising alternatives. These devices harvest ambient mechanical energy and convert it to electrical energy, enabling the self-powered degradation of chemical pollutants. This Review summarizes recent progress and challenges in using TENGs as self-powered electrochemical systems (SPECs) for pollutant degradation via photocatalysis or electrocatalysis. The working principles of TENGs are discussed, focusing on their structural flexibility, operational modes, and ability to capture energy from low-frequency mechanical stimuli. The Review concludes with perspectives and suggestions for future research in this field, hoping to inspire further interest and innovation in developing TENG-based SPECs, which represent sustainable and eco-friendly solutions for pollutant treatment.
Collapse
Affiliation(s)
- Md Mazbah Uddin
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Tanvir Mahady Dip
- Department
of Materials, University of Manchester, Manchester M13 9PL, United Kingdom
- Department
of Yarn Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Shariful Islam Tushar
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Design and Merchandising, Oklahoma State
University, Stillwater, Oklahoma 74078, United States
| | - Abdullah Sayam
- Department
of Textile Engineering, Ahsanullah University
of Science and Technology, Dhaka 1208, Bangladesh
| | - Habibur Rahman Anik
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
- Department
of Apparel Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
- Department
of Chemistry & Chemical and Biomedical Engineering, University of New Haven, New Haven, Connecticut 30605, United States
| | - Md. Reasat Aktar Arin
- Department
of Fabric Engineering, Bangladesh University
of Textiles, Dhaka 1208, Bangladesh
| | - Amit Talukder
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| | - Suraj Sharma
- Department
of Textiles, Merchandising, and Interiors, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
3
|
Shen C, Liang H, Zhao Z, Guo S, Chen Y, Tan Z, Song XZ, Wang X. Mo-Doped LaFeO 3 Gas Sensors with Enhanced Sensing Performance for Triethylamine Gas. SENSORS (BASEL, SWITZERLAND) 2024; 24:4851. [PMID: 39123898 PMCID: PMC11315022 DOI: 10.3390/s24154851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/21/2024] [Accepted: 07/24/2024] [Indexed: 08/12/2024]
Abstract
Triethylamine is a common volatile organic compound (VOC) that plays an important role in areas such as organic solvents, chemical industries, dyestuffs, and leather treatments. However, exposure to triethylamine atmosphere can pose a serious threat to human health. In this study, gas-sensing semiconductor materials of LaFeO3 nano materials with different Mo-doping ratios were synthesized by the sol-gel method. The crystal structures, micro morphologies, and surface states of the prepared samples were characterized by XRD, SEM, and XPS, respectively. The gas-sensing tests showed that the Mo doping enhanced the gas-sensing performance of LaFeO3. Especially, the 4% Mo-doped LaFeO3 exhibited the highest response towards triethylamine (TEA) gas, a value approximately 11 times greater than that of pure LaFeO3. Meantime, the 4% Mo-doped LaFeO3 sensor showed a remarkably robust linear correlation between the response and the concentration (R2 = 0.99736). In addition, the selectivity, stability, response/recovery time, and moisture-proof properties were evaluated. Finally, the gas-sensing mechanism is discussed. This study provides an idea for exploring a new type of efficient and low-cost metal-doped LaFeO3 sensor to monitor the concentration of triethylamine gas for the purpose of safeguarding human health and safety.
Collapse
Affiliation(s)
- Chenyu Shen
- School of General Education, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (C.S.); (H.L.); (S.G.)
- Leicester International Institute, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (Z.Z.); (Z.T.)
| | - Hongjian Liang
- School of General Education, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (C.S.); (H.L.); (S.G.)
| | - Ziyue Zhao
- Leicester International Institute, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (Z.Z.); (Z.T.)
| | - Suyi Guo
- School of General Education, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (C.S.); (H.L.); (S.G.)
| | - Yuxiang Chen
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China;
| | - Zhenquan Tan
- Leicester International Institute, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (Z.Z.); (Z.T.)
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China;
| | - Xue-Zhi Song
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China;
| | - Xiaofeng Wang
- School of General Education, Dalian University of Technology, 2 Dagong Road, Liaodongwan New District, Panjin 124221, China; (C.S.); (H.L.); (S.G.)
| |
Collapse
|
4
|
Peng Z, Liu H, Zhang C, Zhai Y, Hu W, Tan Y, Li X, Zhou Z, Gong X. Potential Strategy to Control the Organic Components of Condensable Particulate Matter: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:7691-7709. [PMID: 38664958 DOI: 10.1021/acs.est.3c10615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
More and more attention has been paid to condensable particulate matter (CPM) since its emissions have surpassed that of filterable particulate matter (FPM) with the large-scale application of ultralow-emission reform. CPM is a gaseous material in the flue stack but instantly turns into particles after leaving the stack. It is composed of inorganic and organic components. Organic components are an important part of CPM, and they are an irritant, teratogenic, and carcinogenic, which triggers photochemical smog, urban haze, and acid deposition. CPM organic components can aggravate air pollution and climate change; therefore, consideration should be given to them. Based on existing methods for removing atmospheric organic pollutants and combined with the characteristics of CPM organic components, we provide a critical overview from the aspects of (i) fundamental cognition of CPM, (ii) common methods to control CPM organic components, and (iii) catalytic oxidation of CPM organic components. As one of the most encouraging methods, catalytic oxidation is discussed in detail, especially in combination with selective catalytic reduction (SCR) technology, to meet the growing demands for multipollutant control (MPC). We believe that this review is inspiring for a fuller understanding and deeper exploration of promising approaches to control CPM organic components.
Collapse
Affiliation(s)
- Zhengkang Peng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hanxiao Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- Zhejiang Feida Environmental Science & Technology Co., Ltd., Zhuji 311800, China
- Zhejiang Environmental Protection Group Eco-Environmental Research Institute, Hangzhou 310030, China
| | - Chuxuan Zhang
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yunfei Zhai
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuyao Tan
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaomin Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zijian Zhou
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xun Gong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
5
|
Huang Y, Zhu X, Wang D, Hui S. Enhanced formaldehyde oxidation over MnO 2 and doped manganese-based catalysts: Experimental and theoretical Insights into mechanism and performance. ENVIRONMENTAL RESEARCH 2023; 238:117265. [PMID: 37775009 DOI: 10.1016/j.envres.2023.117265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/01/2023]
Abstract
Thermal catalytic degradation of formaldehyde (HCHO) over manganese-based catalysts is garnering significant attention. In this study, both theoretical simulations and experimental methods were employed to elucidate the primary reaction pathways of HCHO on the MnO2(110) surface. Specifically, the effects of doping MnO2 with elements such as Fe, Ce, Ni, Co, and Cu on the HCHO oxidation properties were evaluated. Advanced characterization techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS), were employed to discern the physical properties and chemical states of the active components on the catalyst surface. The comprehensive oxidation pathway of HCHO on the MnO2(110) surface includes O2 adsorption and dissociation, HCHO adsorption and dehydrogenation, CO2 desorption, H2O formation and desorption, oxygen vacancy supplementation, and other elementary reactions. The pivotal rate-determining step was identified as the hydrogen migration process, characterized by an energy barrier of 234.19 kJ mol-1. Notably, HCHOO and *CHOO emerged as crucial intermediates during the reaction. Among the doped catalysts, Fe-doped MnO2 outperformed its counterparts doped with Ce, Ni, Co, and Cu. The optimal degradation rate and selectivity were achieved at a molar ratio of Fe: Mn = 0.1. The superior performance of the Fe-doped MnO2 can be ascribed to its large specific surface area, conducive pore structure for HCHO molecular transport, rich surface-adsorbed oxygen species, and a significant presence of oxygen vacancies.
Collapse
Affiliation(s)
- Yuping Huang
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an 710049, China
| | - Xinwei Zhu
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an 710049, China
| | - Denghui Wang
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an 710049, China.
| | - Shien Hui
- School of Energy and Power Engineering, Xi'an Jiaotong University, No. 28 Xianning West Rd., Xi'an 710049, China
| |
Collapse
|
6
|
Yang Y, Zhang Z, Zhang L, Song F, Ren Y, Zhang X, Zhang J, Liew RK, Foong SY, Chong WWF, Lam SS, Verma M, Ng HS, Sonne C, Ge S. Recent advances in the control of volatile organic compounds emissions from indoor wood-based panels: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163741. [PMID: 37120025 DOI: 10.1016/j.scitotenv.2023.163741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/21/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Wood-based panels provide efficient alternatives to materials such as plastics derived from traditional petroleum sources and thereby help to mitigate greenhouse gas emissions. Unfortunately, using indoor manufactured panel products also results in significant emissions of volatile organic compounds including olefins, aromatic and ester compounds, which negatively affect human health. This paper highlights recent developments and notable achievements in the field of indoor hazardous air treatment technologies to guide future research toward environmentally friendly and economically feasible directions that may have a significant impact on the improvement of human settlements. Summarizing and synthesizing the principles, advantages, and limitations of different technologies can assist policymakers and engineers in identifying the most appropriate technology for a particular air pollution control program based on criteria such as cost-effectiveness, efficiency, and environmental impact. In addition, insights into the development of indoor air pollution control technologies are provided and potential areas for innovation, improvement of existing technologies, and development of new technologies are identified. Finally, the authors also hope that this sub-paper will raise public awareness of indoor air pollution issues and promote a better understanding of the importance of indoor air pollution control technologies for public health, environmental protection, and sustainable development.
Collapse
Affiliation(s)
- Yang Yang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Zhongfeng Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China.
| | - Lei Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Feifei Song
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Yi Ren
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Xu Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Jijuan Zhang
- College of Furniture and Art Design, Central South University of Forestry and Technology, Changsha, Hunan 410004, China; Green Furniture Engineering Technology Research Center, National Forestry & Grassland Administration, Changsha, Hunan 410004, China; Green Home Engineering Technology Research Center in Hunan, Changsha, Hunan 410004, China
| | - Rock Keey Liew
- NV WESTERN PLT, No. 208B, Second Floor, Macalister Road, 10400 Georgetown, Penang, Malaysia; Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Shin Ying Foong
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - William Woei Fong Chong
- Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Center for Transdisciplinary Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; Automotive Development Centre (ADC), Institute for Vehicle Systems and Engineering (IVeSE), Universiti Teknologi Malaysia (UTM), Johor Bahru 81310, Johor, Malaysia
| | - Meenakshi Verma
- University Centre for Research and Development, Department of Chemistry, Chandigarh University, Gharuan, Mohali, Punjab, India
| | - Hui Suan Ng
- Centre for Research and Graduate Studies, University of Cyberjaya, Persiaran Bestari, 63000 Cyberjaya, Selangor, Malaysia
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China.
| |
Collapse
|
7
|
Quan F, Wu B, Guo Y, Zhang X, Shen W, Jia F, Liu X, Ai Z, Zhang L. Electrochemical removal of gaseous benzene using a flow-through reactor with efficient and ultra-stable titanium suboxide/titanium-foam anode at ambient temperature. J Colloid Interface Sci 2023; 645:533-541. [PMID: 37163799 DOI: 10.1016/j.jcis.2023.04.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Catalytic oxidation technology is currently considered as a feasible approach to degrade and mineralize volatile organic compounds (VOCs). However, it is still challenging to realize efficient removal of VOCs through catalytic oxidation at room temperature. In our study, a novel flow-through electrocatalytic reactor was designed, composed of porous solid-electrolyte, gas-permeable titanium sub-oxides/titanium-foam (TiSO/Ti-foam) as anode and platinum coated titanium foam (Pt/Ti-foam) as cathode. This device could oxidize nearly 100% of benzene (10 ppm) to carbon dioxide at a current density of 1.2 mA/cm2 under room temperature. More importantly, the device maintained excellent stability over 1000 h. Mechanism of benzene mineralization was discussed. Hydroxyl radicals generated on the TiSO/Ti-foam anode played a crucial role in the oxidation of benzene. This study provides a promising prototype of the electrochemical air purifier, and may find its application in domestic and industrial air pollution control.
Collapse
Affiliation(s)
- Fengjiao Quan
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China; College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Bin Wu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Yuxiao Guo
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Xu Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Wenjuan Shen
- College of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Falong Jia
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Xiao Liu
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China.
| | - Zhihui Ai
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| | - Lizhi Zhang
- College of Chemistry, Central China Normal University, Wuhan 430079, PR China
| |
Collapse
|