1
|
Paul S, Das S, Sepay N, Basak N, Sen B, Islam E, Das U, van Smaalen S, Abbas SJ, Ali SI. Acentric Order-Disorder Zn 3Sb 4CO 6F 6: Crystal Structure, Dye Degradation, Cr(VI) Removal, Antibacterial Activity, and Catalytic C-C Bond Formation. Inorg Chem 2025; 64:2649-2668. [PMID: 39912918 DOI: 10.1021/acs.inorgchem.4c03972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Acentric Zn3Sb4CO6F6 has been synthesized by a hydrothermal technique. Single crystal X-ray diffraction study reveals that it crystallizes in cubic symmetry with a = 8.1480 (5) Å and Z = 2 (I4̅3 m). The carbon atom has tetrahedral coordination by Sb, either as an ordered structure at the center of the tetrahedron or as a disordered structure with carbon displaced toward three Sb atoms; the latter model leads to more acceptable Sb-C interatomic distances. Zn3Sb4CO6F6 has been established as the first multifunctional [M-L-C-O-F] compound, with exceptional properties, i.e., photocatalyst, adsorbent, catalyst for organic reactions, and antibacterial agent. This compound successfully degraded 89.5% of 50 mg/L methylene blue dye under solar illumination. It was also proved to be a proficient adsorbent toward Cr(VI) removal with qmax of 47.18 mg/g. The antibacterial activity was investigated by "agar cup assay" against both Gram-positive and Gram-negative bacterial strains. Zn3Sb4CO6F6 also functions as an excellent catalyst for the solvent-free Knoevenagel condensation reaction, with more than 90% yield. Theoretical investigations further proved that Zn3Sb4CO6F6 exhibits a direct band gap energy of 1.76 eV, which is consistent with the experimental findings. The synthesized compound was also characterized through fourier transform infrared spectroscopy, powder X-ray diffraction, field emission scanning electron microscopy, transmission electron microscopy, and selected area electron diffraction study.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Nayim Sepay
- Department of Chemistry, Lady Brabourne College, P-1/2 Suhrawardy Avenue, Kolkata, West Bengal 700017, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia 741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia 741235, West Bengal, India
| | - Uttam Das
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
- Department of Chemistry, Kalyani Government Engineering College, Nadia 741235, West Bengal, India
| | - Sander van Smaalen
- Laboratory of Crystallography, University of Bayreuth, Bayreuth 95440, Germany
| | - Sk Jahir Abbas
- Department of Obstetrics and Gynecology, Asia University Hospital, Taichung 41354, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia 741235, West Bengal, India
| |
Collapse
|
2
|
Virender V, Pandey V, Singh G, Sharma PK, Bhatia P, Solovev AA, Mohan B. Hybrid Metal-Organic Frameworks (MOFs) for Various Catalysis Applications. Top Curr Chem (Cham) 2024; 383:3. [PMID: 39671137 DOI: 10.1007/s41061-024-00486-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 11/22/2024] [Indexed: 12/14/2024]
Abstract
Porous materials have been gaining popularity in catalysis applications, solving the current ecological challenges. Metal-organic frameworks (MOFs) are especially noteworthy for their high surface areas and customizable chemistry, giving them a wide range of potential applications in catalysis remediation. The review study delves into the various applications of MOFs in catalysis and provides a comprehensive summary. This review thoroughly explores MOF materials, specifically focusing on their diverse catalytic applications, including Lewis catalysis, oxidation, reduction, photocatalysis, and electrocatalysis. Also, this study emphasizes the significance of high-performance MOF materials, which possess adjustable properties and exceptional features, as a novel approach to tackling technological challenges across multiple sectors. MOFs make it an ideal candidate for catalytic reactions, as it enables efficient conversion rates and selectivity. Furthermore, the tunable properties of MOF make it possible to tailor its structure to suit specific catalytic requirements. This feature improves performance and reduces costs associated with traditional catalysts. In conclusion, MOF materials have revolutionized the field of catalysis and offer immense potential in solving various technological challenges across different industries.
Collapse
Affiliation(s)
- Virender Virender
- Department of Chemistry, Deenbandhu Chhotu Ram University of Science and Technology, Murthal, Sonepat, 131039, Haryana, India
| | - Vandana Pandey
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India.
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies, Panjab University, Chandigarh, 160014, India
| | - Pawan Kumar Sharma
- Department of Chemistry, School of Basic Sciences, Central University of Haryana, Mahendragarh, 123031, Haryana, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra, Kurukshetra, 136119, India
| | - Alexander A Solovev
- Department of Materials Science and State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 200433, People's Republic of China
| | - Brij Mohan
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal.
| |
Collapse
|
3
|
Sen B, Paul S, Krukowski P, Kundu D, Das S, Banerjee P, Mal Ecka M, Abbas SJ, Ali SI. CuAs 2O 4: Design, Hydrothermal Synthesis, Crystal Structure, Photocatalytic Dye Degradation, Hydrogen Evolution Reaction, Knoevenagel Condensation Reaction, and Thermal Studies. Inorg Chem 2024; 63:2919-2933. [PMID: 38297514 DOI: 10.1021/acs.inorgchem.3c03225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
CuAs2O4 has been explored as a heterogeneous catalyst in the fields of photocatalysis, electrocatalysis, and solvent-free organic transformation reactions. The homogeneity has been successfully attained for the first time by designing a pH-assisted hydrothermal synthesis technique. Single-crystal X-ray diffraction studies reveal that no phase transition has been observed by lowering the temperature up to 103 K with no existence of satellite reflections. The crystal structure exhibits tetragonal symmetry with space group P42/mbc and consists of [CuO6] octahedra and [AsO3E] tetrahedra (E represents the stereochemically active lone pair). Structural investigation shows a cylindrical void inside the structure, which could lead to interesting physical and chemical properties. The photocatalytic dye degradation efficiency with methylene blue (MB) showed ∼100% degradation, though the degradation efficiency increased by 2-fold with the addition of 6% H2O2. The reusability of the catalyst up to the 10th cycle with ∼35% MB dye degradation has been established. It can exhibit HER activity with a low overpotential of 165 mV with respect to RHE to attain the current density of j = 10 mA cm-2. SEM and TEM revealed rod-shaped particles, which supported the large number of catalytic active sites. The structural consistency of the catalyst after photodegradation and HER studies is confirmed by the PXRD pattern. XPS confirms the oxidation state of Cu and As in the compound. The catalytic activity toward the Knoevenagel condensation reaction at moderate temperature under solvent-free condition is also studied. TG-DTA shows an endothermic minimum (Tmin) at 436 °C due to the mass loss of As2O3.
Collapse
Affiliation(s)
- Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Pawel Krukowski
- Department of Solid State Physics, University of Lodz, Lodz 90-236, Poland
| | - Debojyoti Kundu
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| | - Priyabrata Banerjee
- CSIR- Central Mechanical Engineering Research Institute (CMERI), Durgapur, West Bengal 713209, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Magdalena Mal Ecka
- Department of Physical Chemistry, University of Lodz, Lodz 90-236, Poland
| | - Sk Jahir Abbas
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani, West Bengal 741235, India
| |
Collapse
|
4
|
Cowan JA. Influence of the Weak Nuclear Force on Metal-Promoted Autocatalytic Strecker Synthesis of Amino Acids: Formation of a Chiral Pool of Precursors for Prebiotic Peptide and Protein Synthesis. Life (Basel) 2023; 14:66. [PMID: 38255681 PMCID: PMC10817680 DOI: 10.3390/life14010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 12/27/2023] [Indexed: 01/24/2024] Open
Abstract
Natural chiral amino acids typically adopt an L structural configuration. While a preference for specific molecular chiralities is observed throughout biology and cellular chemistry, the origins of this preference are unclear. In a previous report the origin of enantiomeric selectivity was analyzed in terms of an "RNA World" model, and a pathway to a chiral preference for d-ribose was proposed based on the autocatalytic transformation of glyceraldehyde as a precursor to the formation of sugars. Metal-ion-promoted catalysis allows the parity non-conserving (PNC) weak nuclear interaction to influence the chirality of a nascent chiral carbon center. Since the PNC effect is the only natural property with an inherent handedness, it is an obvious candidate to influence enantiomeric preference from a catalytic reaction performed over geologically relevant time scales. The PNC influence requires and emphasizes the important role of catalytic metal ions in primordial chemistry. In this study, the impact of geologically available divalent calcium and higher Z alkaline earth elements are examined as mediators of chiral preference. Detailed calculations of the magnitude of the effect are presented, including the influence of time, temperature, pH, and metal ion identity. It is concluded that metal ions can direct chiral preference for amino acid synthesis via a metal-promoted autocatalytic Strecker reaction within a relatively short geological timeframe, thereby providing a pool of l-amino acids for catalytic chemistry evolving either from an RNA-world model of molecular evolution or alternative pathways to protein synthesis.
Collapse
Affiliation(s)
- J A Cowan
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Nawaz R, Ullah H, Ghanim AAJ, Irfan M, Anjum M, Rahman S, Ullah S, Abdel Baki Z, Kumar Oad V. Green Synthesis of ZnO and Black TiO 2 Materials and Their Application in Photodegradation of Organic Pollutants. ACS OMEGA 2023; 8:36076-36087. [PMID: 37810725 PMCID: PMC10551907 DOI: 10.1021/acsomega.3c04229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
ZnO and black TiO2 have been selected as the most efficient materials for organic pollution abatement due to their increased efficiency when compared to other materials. However, the concept of green chemistry makes it desirable to design green synthesis approaches for their production. In this study, black TiO2 was synthesized using an environmentally safe synthetic technique with glycerol as a reductant. ZnO was prepared by using ionic-liquid-based microwave-assisted extracts of Polygonum minus. To investigate the materials' potential to photodegrade organic pollutants, methylene blue (MB) and phenol were chosen as model organic pollutants. Both materials were found to exhibit spherical morphologies and a mesoporous structure and were efficient absorbers of visible light. ZnO exhibited electron-hole pair recombination lower than that of black TiO2. Black TiO2 was discovered to be an anatase phase, whereas ZnO was found to have a hexagonal wurtzite structure. In contrast to black TiO2, which had a surface area of 239.99 m2/g and a particle size of 28 nm, ZnO had a surface area of 353.11 m2/g and a particle size of 32 nm. With a degradation time of 60 min, ZnO was able to eliminate 97.50% of the 40 mg/L MB. Black TiO2, on the other hand, could reduce 90.0% of the same amount of MB in 60 min. When tested for phenol degradation, ZnO and black TiO2 activities were reduced by nearly 15 and 25%, respectively. A detailed examination of both ZnO and black TiO2 materials revealed that ZnO has more potential and versatility for the degradation of organic pollutants under visible light irradiation.
Collapse
Affiliation(s)
- Rab Nawaz
- Institute
of Soil and Environmental Sciences, Pir
Mehr Ali Shah Arid Agriculture University Shamsabad, Murree Road, 46300 Rawalpindi, Pakistan
- Department
of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor, Malaysia
- Centre
for Research and Instrumentation Management (CRIM), Universiti Kebangsaan (UKM), 43600 Bangi, Selangor, Malaysia
| | - Habib Ullah
- Fundamental
and Applied Sciences (FASD), Universiti
Teknologi PETRONAS (UTP), 32610 Seri Iskandar, Perak, Malaysia
| | | | - Muhammad Irfan
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Muzammil Anjum
- Institute
of Soil and Environmental Sciences, Pir
Mehr Ali Shah Arid Agriculture University Shamsabad, Murree Road, 46300 Rawalpindi, Pakistan
| | - Saifur Rahman
- Electrical
Engineering Department, College of Engineering, Najran University, Najran 61441, Saudi Arabia
| | - Shafi Ullah
- Institute
of Soil and Environmental Sciences, Pir
Mehr Ali Shah Arid Agriculture University Shamsabad, Murree Road, 46300 Rawalpindi, Pakistan
| | - Zaher Abdel Baki
- College
of Engineering and Technology, American
University of the Middle East, Egaila 15453, Kuwait
| | - Vipin Kumar Oad
- Faculty
of Civil and Environmental Engineering, Gdansk University of Technology, 80-233 Gdansk, Poland
| |
Collapse
|
6
|
Afaq S, Akram MU, Malik WMA, Ismail M, Ghafoor A, Ibrahim M, Nisa MU, Ashiq MN, Verpoort F, Chughtai AH. Amide Functionalized Mesoporous MOF LOCOM-1 as a Stable Highly Active Basic Catalyst for Knoevenagel Condensation Reaction. ACS OMEGA 2023; 8:6638-6649. [PMID: 36844569 PMCID: PMC9948166 DOI: 10.1021/acsomega.2c07137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Acyl-amide is extensively used as functional group and is a superior contender for the design of MOFs with the guest accessible functional organic sites. A novel acyl-amide-containing tetracarboxylate ligand, bis(3,5-dicarboxy-pheny1)terephthalamide, has been successfully synthesized. The H4L linker has some fascinating attributes as follows: (i) four carboxylate moieties as the coordination sites confirm affluent coordination approaches to figure a diversity of structure; (ii) two acyl-amide groups as the guest interaction sites can engender guest molecules integrated into the MOF networks through H-bonding interfaces and have a possibility to act as functional organic sites for the condensation reaction. A mesoporous MOF ([Cu2(L)(H2O)3]·4DMF·6H2O) has been prepared in order to produce the amide FOS within the MOF, which will work as guest accessible sites. The prepared MOF was characterized by CHN analysis, PXRD, FTIR spectroscopy, and SEM analysis. The MOF showed superior catalytic activity for Knoevenagel condensation. The catalytic system endures a broad variety of the functional groups and presents high to modest yields of aldehydes containing electron withdrawing groups (4-chloro, 4-fluoro, 4-nitro), offering a yield > 98 in less reaction time as compared to aldehydes with electron donationg groups (4-methyl). The amide decorated MOF (LOCOM-1-) as a heterogeneous catalyst can be simply recovered by centrifugation and recycled again without a flagrant loss of its catalytic efficiency.
Collapse
Affiliation(s)
- Sheereen Afaq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Usman Akram
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Wasif Mahmood Ahmed Malik
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
- Department
of Chemistry, Emerson University Multan, Multan 60000, Pakistan
| | - Muhammad Ismail
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Abdul Ghafoor
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Muhammad Ibrahim
- Department
of Biochemistry, Bahauddin Zakariya University, Multan 60800, Pakistan
| | - Mehr un Nisa
- Department
of Chemistry, University of Lahore, Lahore 54590, Pakistan
| | - Muhammad Naeem Ashiq
- Institute
of Chemical Sciences, Bahauddin Zakariya
University, Multan 60800, Pakistan
| | - Francis Verpoort
- Laboratory
of Organometallics, Catalysis and Ordered Materials, State Key Laboratory
of Advanced Technology for the Materials Synthesis and Processing,
Center for the Chemical and Material Engineering, Wuhan University of Technology, Wuhan 430070, China
| | | |
Collapse
|
7
|
Paul S, Sen B, Basak N, Chakraborty N, Bhakat K, Das S, Islam E, Mondal S, Abbas SJ, Ali SI. Zn 3Sb 4O 6F 6 and KI-Doped Zn 3Sb 4O 6F 6: A Metal Oxyfluoride System for Photocatalytic Activity, Knoevenagel Condensation, and Bacterial Disinfection. Inorg Chem 2023; 62:1032-1046. [PMID: 36598860 DOI: 10.1021/acs.inorgchem.2c04006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Zn3Sb4O6F6 crystallites were synthesized by a pH-regulated hydrothermal synthetic approach, while doping on Zn3Sb4O6F6 by KI was performed by the "incipient wetness impregnation technique." The effect of KI in Zn3Sb4O6F6 is found with the changes in morphology in the doped compound, i.e., needle-shaped particles with respect to the irregular cuboid and granular shaped in the pure compound. Closer inspection of the powder diffraction pattern of doped compounds also reveals the shifting of Braggs' peaks toward a lower angle and the difference in cell parameters compared to the pure compound. Both metal oxyfluoride comprising lone pair elements and their doped compounds have been successfully applied as photocatalysts for methylene blue dye degradation. Knoevenagel condensation reactions were performed using Zn3Sb4O6F6 as the catalyst and confirmed 99% yield even at 60 °C temperature under solvent-free conditions. Both pure and KI-doped compounds were tested against several standard bacterial strains, i.e., Enterobacter sp., Escherichia coli, Staphylococcus sp., Salmonella sp., Bacillus sp., Proteous sp., Pseudomonas sp., and Klebsiella sp. by the "disk diffusion method" and their antimicrobial activities were confirmed.
Collapse
Affiliation(s)
- Sayantani Paul
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Bibaswan Sen
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nilendu Basak
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Nirman Chakraborty
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Kiron Bhakat
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Sangita Das
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Ekramul Islam
- Department of Microbiology, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| | - Swastik Mondal
- CSIR-Central Glass and Ceramic Research Institute, Jadavpur, Kolkata700032, West BengalIndia
| | - Sk Jahir Abbas
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai200025, China
| | - Sk Imran Ali
- Department of Chemistry, University of Kalyani, Nadia, Kalyani741235, West Bengal, India
| |
Collapse
|
8
|
Khan S, Markad D, Mandal SK. Two Zn(II)/Cd(II) Coordination Polymers as Recyclable Heterogeneous Catalysts for an Efficient Room-Temperature Synthesis of α-Aminonitriles via the Solvent-Free Strecker Reaction. Inorg Chem 2023; 62:275-284. [PMID: 36548123 DOI: 10.1021/acs.inorgchem.2c03369] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The α-aminonitriles are versatile building blocks in the synthesis of natural or artificial amino acids as well as important intermediates in organic synthesis. For their synthesis, the three-component Strecker reaction involving an aldehyde or a ketone together with amines and trimethylsilyl cyanide is used. In the literature, hydrothermally produced metal-based heterogeneous Lewis acid catalysts have been utilized in various solvents. In this work, we aimed at a greener approach toward such catalysis by (a) making two precatalysts with d10 metal centers, {[Zn(hipamifba)(H2O)]·2H2O}n (1) and {[Cd(hipamifba)(H2O)2]·2H2O}n (2) (where H2hipamifba = 4-(((4-((carboxymethyl) carbamoyl)phenyl)amino)methyl)benzoic acid), via an easy and scalable room-temperature method, and (b) showcasing the use of these coordination polymers (CPs) as very efficient, recyclable, and heterogeneous catalysts for the Strecker reaction to form α-aminonitriles in high yields under solvent-free reaction at ambient conditions. This has also allowed us to demonstrate the importance of open metal sites in such catalysis through an efficiency comparison between activated 1 and 2. In addition, activated 2 exhibited a wide substrate scope including a natural product Girgensohnine, providing an example of a natural product synthesis by a CP catalyst via an organic transformation such as the Strecker reaction.
Collapse
Affiliation(s)
- Sheeba Khan
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Datta Markad
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector 81, Manauli PO, S.A.S. Nagar, Mohali, Punjab 140306, India
| |
Collapse
|