1
|
Berdasco C, Duhalde Vega M, Rosato-Siri MV, Goldstein J. Environmental Cues Modulate Microglial Cell Behavior Upon Shiga Toxin 2 From Enterohemorrhagic Escherichia coli Exposure. Front Cell Infect Microbiol 2020; 9:442. [PMID: 31970091 PMCID: PMC6960108 DOI: 10.3389/fcimb.2019.00442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Shiga toxin (Stx) produced by enterohemorrhagic E. coli produces hemolytic uremic syndrome and encephalopathies in patients, which can lead to either reversible or permanent neurological abnormalities, or even fatal cases depending on the degree of intoxication. It has been observed that the inflammatory component plays a decisive role in the severity of the disease. Therefore, the objective of this work was to evaluate the behavior of microglial cell primary cultures upon Stx2 exposure and heat shock or lipopolysaccharide challenges, as cues which modulate cellular environments, mimicking fever and inflammation states, respectively. In these contexts, activated microglial cells incorporated Stx2, increased their metabolism, phagocytic capacity, and pro-inflammatory profile. Stx2 uptake was associated to receptor globotriaosylceramide (Gb3)-pathway. Gb3 had three clearly distinguishable distribution patterns which varied according to different contexts. In addition, toxin uptake exhibited both a Gb3-dependent and a Gb3-independent binding depending on those contexts. Altogether, these results suggest a fundamental role for microglial cells in pro-inflammatory processes in encephalopathies due to Stx2 intoxication and highlight the impact of environmental cues.
Collapse
Affiliation(s)
- Clara Berdasco
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Maite Duhalde Vega
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - María Victoria Rosato-Siri
- Instituto de Química y Fisicoquímica Biológicas, Universidad de Buenos Aires, CONICET, Buenos Aires, Argentina
| | - Jorge Goldstein
- Laboratorio de Neurofisiopatología, Consejo Nacional de Investigaciones Científicas y Técnicas, Facultad de Medicina, Instituto de Fisiología y Biofísica "Houssay", Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
2
|
Zhang B, Wang G, He J, Yang Q, Li D, Li J, Zhang F. Icariin attenuates neuroinflammation and exerts dopamine neuroprotection via an Nrf2-dependent manner. J Neuroinflammation 2019; 16:92. [PMID: 31010422 PMCID: PMC6477740 DOI: 10.1186/s12974-019-1472-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/01/2019] [Indexed: 12/27/2022] Open
Abstract
Background Oxidative stress and neuroinflammation are considered the major central events in the process of Parkinson’s disease (PD). Nrf2 is a key regulator of endogenous defense systems. New finds have contacted activation of Nrf2 signaling with anti-inflammatory activities. Therefore, the outstanding inhibition of neuroinflammation or potent Nrf2 signaling activation holds a promising strategy for PD treatment. Icariin (ICA), a natural compound derived from Herba Epimedii, presents a number of pharmacological properties, including anti-oxidation, anti-aging and anti-inflammatory actions. Recent studies have confirmed ICA exerted neuroprotection against neurodegenerative disorders. However, the underlying mechanisms were not fully elucidated. Methods In the present study, mouse nigral stereotaxic injection of 6-hydroxydopamine (6-OHDA)-induced PD model was performed to investigate ICA-conferred dopamine (DA) neuroprotection. In addition, adult Nrf2 knockout mice and primary rat midbrain neuron-glia co-culture was applied to elucidate whether ICA-exerted neuroprotection was through an Nrf2-dependent mechanism. Results Results indicated that ICA attenuated 6-OHDA-induced DA neurotoxicity and glial cells-mediated neuroinflammatory response. Furtherly, activation of Nrf2 signaling pathway in glial cells participated in ICA-produced neuroprotection, as revealed by the following observations. First, ICA enhanced Nrf2 signaling activation in 6-OHDA-induced mouse PD model. Second, ICA failed to generate DA neuroprotection and suppress glial cells-mediated pro-inflammatory factors production in Nrf2 knockout mice. Third, ICA exhibited neuroprotection in primary neuron-glia co-cultures but not in neuron-enriched cultures (without glial cells presence). Either, ICA-mediated neuroprotection was not discerned after Nrf2 siRNA treatment in neuron-glia co-cultures. Conclusions Our findings identify that ICA attenuated glial cells-mediated neuroinflammation and evoked DA neuroprotection via an Nrf2-dependent manner. Electronic supplementary material The online version of this article (10.1186/s12974-019-1472-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bei Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Guoqing Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qiuyu Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Daidi Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingjie Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.
| |
Collapse
|
3
|
Sugimoto N, Katakura M, Matsuzaki K, Nakamura H, Yachie A, Shido O. Capsaicin partially mimics heat in mouse fibroblast cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2016; 390:281-289. [PMID: 27975298 DOI: 10.1007/s00210-016-1331-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022]
Abstract
Capsaicin activates transient receptor potential vanilloid 1 (TRPV1), a cation channel in the transient receptor potential family, resulting in the transient entry of Ca2+ and Mg2+ and a warm sensation. However, the effects of capsaicin on cells have not fully elucidated in fibroblasts. In this study, we investigated whether capsaicin could induce signal transduction in mouse fibroblast cells and compared the effect with that of heat-induced signal transduction. The activation of the mitogen-activated protein kinases (MAPKs) ERK and p38 MAPK, expression levels of heat shock protein 70 (HSP70) and HSP90, actin assembly, and cell proliferation were analyzed in NIH3T3 mouse fibroblast cells. A 15-min stimulation with capsaicin (∼100 μM) phosphorylated ERK and p38 MAPK and induced actin assembly. A 2-day stimulation with capsaicin increased the level of HSP70, but not HSP90, and the 2-day stimulation with capsaicin (∼100 μM) did not affect cell proliferation. A 15-min exposure to moderate heat (39.5 °C) phosphorylated both ERK and p38 MAPK and induced actin assembly to similar degrees as stimulation with capsaicin. A 2-day exposure to moderate heat increased the levels of both HSP70 and HSP90 and prevented cell proliferation. However, the 2-day stimulation with capsaicin (100 μM) failed to prevent heat shock-induced cell death. Thus, our results suggest that the effects of capsaicin on fibroblast cells partially differ from those of heat. Notably, the 2-day stimulation with capsaicin was not sufficient to develop heat tolerance in fibroblast cells.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, Ishikawa, 920-8640, Japan. .,Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan.
| | - Masanori Katakura
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan.,Department of Nutritional Physiology, Faculty of Pharmaceutical Sciences, Josai University, Sakado, 350-0295, Japan
| | - Kentaro Matsuzaki
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan
| | - Hiroyuki Nakamura
- Department of Public Health Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, 920-8640, Japan
| | - Osamu Shido
- Department of Environmental Physiology, School of Medicine, Shimane University, Izumo, 693-8501, Japan
| |
Collapse
|
4
|
Goldstein J, Carden TR, Perez MJ, Taira CA, Höcht C, Gironacci MM. Angiotensin-(1-7) protects from brain damage induced by shiga toxin 2-producing enterohemorrhagic Escherichia coli. Am J Physiol Regul Integr Comp Physiol 2016; 311:R1173-R1185. [PMID: 27681328 DOI: 10.1152/ajpregu.00467.2015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 09/01/2016] [Accepted: 09/13/2016] [Indexed: 01/03/2023]
Abstract
Shiga toxin 2 (Stx2)-producing enterohemorrhagic induced brain damage. Since a cerebroprotective action was reported for angiotensin (Ang)-(1-7), our aim was to investigate whether Ang-(1-7) protects from brain damage induced by Stx2-producing enterohemorrhagic Escherichia coli The anterior hypothalamic area of adult male Wistar rats was injected with saline solution or Stx2 or Stx2 plus Ang-(1-7) or Stx2 plus Ang-(1-7) plus A779. Rats received a single injection of Stx2 at the beginning of the experiment, and Ang-(1-7), A779, or saline was administered daily in a single injection for 8 days. Cellular ultrastructural changes were analyzed by transmission electron microscopy. Stx2 induced neurodegeneration, axonal demyelination, alterations in synapse, and oligodendrocyte and astrocyte damage, accompanied by edema. Ang-(1-7) prevented neuronal damage triggered by the toxin in 55.6 ± 9.5% of the neurons and the Stx2-induced synapse dysfunction was reversed. In addition, Ang-(1-7) blocked Stx2-induced demyelination in 92 ± 4% of the axons. Oligodendrocyte damage caused by Stx2 was prevented by Ang-(1-7) but astrocytes were only partially protected by the peptide (38 ± 5% of astrocytes were preserved). Ang-(1-7) treatment resulted in 50% reduction in the number of activated microglial cells induced by Stx2, suggesting an anti-inflammatory action. All these beneficial effects elicited by Ang-(1-7) were blocked by the Mas receptor antagonist and thus it was concluded that Ang-(1-7) protects mainly neurons and oligodendrocytes, and partially astrocytes, in the central nervous system through Mas receptor stimulation.
Collapse
Affiliation(s)
- Jorge Goldstein
- Laboratorio de Neurofisiopatología, Instituto de Fisiología y Biofísica "Houssay"-CONICET, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Tomás R Carden
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; and
| | - María J Perez
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; and
| | - Carlos A Taira
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Christian Höcht
- Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Mariela M Gironacci
- Departamento de Química Biológica, Instituto de Química y Fisicoquímica Biológicas-CONICET, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina; and
| |
Collapse
|
5
|
Leu H, Sugimoto N, Shimizu M, Toma T, Wada T, Ohta K, Yachie A. Tumor necrosis factor-α modifies the effects of Shiga toxin on glial cells. Int Immunopharmacol 2016; 38:139-43. [PMID: 27268285 DOI: 10.1016/j.intimp.2016.05.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/16/2016] [Accepted: 05/26/2016] [Indexed: 11/25/2022]
Abstract
Shiga toxin (STX) is one of the main factors inducing hemorrhagic colitis and hemolytic-uremic syndrome (HUS) in infections with STX-producing Escherichia coli (STEC). Approximately 62% of patients with HUS showed symptoms of encephalopathy in the 2011 Japanese outbreak of STEC infections. At that time, we reported elevated serum concentrations of tumor necrosis factor (TNF)-α in patients with acute encephalopathy during the HUS phase. In the current study, we investigated whether TNF-α augments the effects of STX in glial cell lines and primary glial cells. We found that TNF-α alone or STX in combination with TNF-α activates nuclear factor-κB (NF-κB) signaling and inhibits growth of glial cells. The magnitude of the NF-κB activation and the inhibition of cell growth by the STX and TNF-α combination was greater than that obtained with TNF-α alone or STX alone. Thus, this in vitro study reveals the role of TNF-α in glial cells during STEC infections.
Collapse
Affiliation(s)
- Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Naotoshi Sugimoto
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan; Department of Physiology, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Kunio Ohta
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|
6
|
Sugimoto N, Leu H, Inoue N, Shimizu M, Toma T, Kuroda M, Saito T, Wada T, Yachie A. The critical role of lipopolysaccharide in the upregulation of aquaporin 4 in glial cells treated with Shiga toxin. J Biomed Sci 2015; 22:78. [PMID: 26385393 PMCID: PMC4575422 DOI: 10.1186/s12929-015-0184-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 09/10/2015] [Indexed: 11/10/2022] Open
Abstract
Background In 2011, there was an outbreak of Shiga toxin-producing Escherichia coli (STEC) infections in Japan. Approximately 62 % of patients with hemolytic-uremic syndrome also showed symptoms of encephalopathy. To determine the mechanisms of onset for encephalopathy during STEC infections, we conducted an in vitro study with glial cell lines and primary glial cells. Results Shiga toxin 2 (Stx-2) in combination with lipopolysaccharide (LPS), or LPS alone activates nuclear factor-κB (NF-κB) signaling in glial cells. Similarly, Stx-2 in combination with LPS, or LPS alone increases expression levels of aquaporin 4 (AQP4) in glial cells. It is possible that overexpression of AQP4 results in a rapid and increased influx of osmotic water across the plasma membrane into cells, thereby inducing cell swelling and cerebral edema. Conclusions We have showed that a combination of Stx-2 and LPS induced apoptosis of glial cells recently. Glial cells are indispensable for cerebral homeostasis; therefore, their dysfunction and death impairs cerebral homeostasis and results in encephalopathy. We postulate that the onset of encephalopathy in STEC infections occurs when Stx-2 attacks vascular endothelial cells of the blood–brain barrier, inducing their death. Stx-2 and LPS then attack the exposed glial cells that are no longer in contact with the endothelial cells. AQP4 is overexpressed in glial cells, resulting in their swelling and adversely affecting cerebral homeostasis. Once cerebral homeostasis is affected in such a way, encephalopathy is the likely result in STEC patients. Electronic supplementary material The online version of this article (doi:10.1186/s12929-015-0184-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Naotoshi Sugimoto
- Department of Physiology, Graduate School of Medical Science, Kanazawa University, 13-1 Takara-machi, Kanazawa, 920-8640, Japan. .,Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Hue Leu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan. .,Dan Phuong General Hospital, Hanoi, Vietnam.
| | - Natsumi Inoue
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Masaki Shimizu
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Tomoko Toma
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Mondo Kuroda
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Takekatsu Saito
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Taizo Wada
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| | - Akihiro Yachie
- Department of Pediatrics, Graduate School of Medical Science, Kanazawa University, Kanazawa, Japan.
| |
Collapse
|