1
|
Schmid KF, Zeinali S, Moser SK, Dubey C, Schneider S, Deng H, Haefliger S, Marti TM, Guenat OT. Assessing the metastatic potential of circulating tumor cells using an organ-on-chip model. Front Bioeng Biotechnol 2024; 12:1457884. [PMID: 39439549 PMCID: PMC11493642 DOI: 10.3389/fbioe.2024.1457884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Metastatic lung cancer remains a leading cause of death worldwide, with its intricate metastatic cascade posing significant challenges to researchers and clinicians. Despite substantial progress in understanding this cascade, many aspects remain elusive. Microfluidic-based vasculature-on-chip models have emerged as powerful tools in cancer research, enabling the simulation of specific stages of tumor progression. In this study, we investigate the extravasation behaviors of A549 lung cancer cell subpopulations, revealing distinct differences based on their phenotypes. Our results show that holoclones, which exhibit an epithelial phenotype, do not undergo extravasation. In contrast, paraclones, characterized by a mesenchymal phenotype, demonstrate a notable capacity for extravasation. Furthermore, we observed that paraclones migrate significantly faster than holoclones within the microfluidic model. Importantly, we found that the depletion of vascular endothelial growth factor (VEGF) effectively inhibits the extravasation of paraclones. These findings highlight the utility of microfluidic-based models in replicating key aspects of the metastatic cascade. The insights gained from this study underscore the potential of these models to advance precision medicine by facilitating the assessment of patient-specific cancer cell dynamics and drug responses. This approach could lead to improved strategies for predicting metastatic risk and tailoring personalized cancer therapies, potentially involving the sampling of cancer cells from patients during tumor resection or biopsies.
Collapse
Affiliation(s)
- Karin F. Schmid
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Soheila Zeinali
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Susanne K. Moser
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sabine Schneider
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
| | - Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Simon Haefliger
- Department of Medical Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thomas M. Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of BioMedical Research, University of Bern, Bern, Switzerland
| | - Olivier T. Guenat
- Organs-on-chip Technologies Laboratory, ARTORG Center, University of Bern, Bern, Switzerland
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
2
|
Pan C, Hao X, Deng X, Lu F, Liu J, Hou W, Xu T. The roles of Hippo/YAP signaling pathway in physical therapy. Cell Death Discov 2024; 10:197. [PMID: 38670949 PMCID: PMC11053014 DOI: 10.1038/s41420-024-01972-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Cellular behavior is regulated by mechanical signals within the cellular microenvironment. Additionally, changes of temperature, blood flow, and muscle contraction also affect cellular state and the development of diseases. In clinical practice, physical therapy techniques such as ultrasound, vibration, exercise, cold therapy, and hyperthermia are commonly employed to alleviate pain and treat diseases. However, the molecular mechanism about how these physiotherapy methods stimulate local tissues and control gene expression remains unknow. Fortunately, the discovery of YAP filled this gap, which has been reported has the ability to sense and convert a wide variety of mechanical signals into cell-specific programs for transcription, thereby offering a fresh perspective on the mechanisms by which physiotherapy treat different diseases. This review examines the involvement of Hippo/YAP signaling pathway in various diseases and its role in different physical therapy approaches on diseases. Furthermore, we explore the potential therapeutic implications of the Hippo/YAP signaling pathway and address the limitations and controversies surrounding its application in physiotherapy.
Collapse
Affiliation(s)
- Chunran Pan
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoxia Hao
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaofeng Deng
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiawei Liu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenjie Hou
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tao Xu
- Department of Rehabilitation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
3
|
Zhao B, Lv Y. A biomechanical view of epigenetic tumor regulation. J Biol Phys 2023; 49:283-307. [PMID: 37004697 PMCID: PMC10397176 DOI: 10.1007/s10867-023-09633-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 03/12/2023] [Indexed: 04/04/2023] Open
Abstract
The occurrence and development of tumors depend on a complex regulation by not only biochemical cues, but also biomechanical factors in tumor microenvironment. With the development of epigenetic theory, the regulation of biomechanical stimulation on tumor progress genetically is not enough to fully illustrate the mechanism of tumorigenesis. However, biomechanical regulation on tumor progress epigenetically is still in its infancy. Therefore, it is particularly important to integrate the existing relevant researches and develop the potential exploration. This work sorted out the existing researches on the regulation of tumor by biomechanical factors through epigenetic means, which contains summarizing the tumor epigenetic regulatory mode by biomechanical factors, exhibiting the influence of epigenetic regulation under mechanical stimulation, illustrating its existing applications, and prospecting the potential. This review aims to display the relevant knowledge through integrating the existing studies on epigenetic regulation in tumorigenesis under mechanical stimulation so as to provide theoretical basis and new ideas for potential follow-up research and clinical applications. Mechanical factors under physiological conditions stimulate the tumor progress through epigenetic ways, and new strategies are expected to be found with the development of epidrugs and related delivery systems.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, No. 1 Sunshine Avenue, Jiangxia District, Wuhan, Hubei Province, 430200, People's Republic of China.
| |
Collapse
|
4
|
Wang H, Tan F, Xu Y, Ma Y, Li Y, Xiao H. Adenosine Receptor A2B Antagonist Inhibits the Metastasis of Gastric Cancer Cells and Enhances the Efficacy of Cisplatin. Technol Cancer Res Treat 2023; 22:15330338221150318. [PMID: 36786018 PMCID: PMC9929921 DOI: 10.1177/15330338221150318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Adenosine receptors play a key role in cancer progression. This study investigated the effect of the adenosine A2B receptor (ADORA2B) on epithelial-mesenchymal transition (EMT) markers and cell metastasis of gastric cancer (GC) cells. Public databases were used to investigate the specificity of ADORA2B expression in GC tissue. We used immunohistochemistry and immunofluorescence to detect ADORA2B expression in GC tissue, paracancerous tissue, and metastatic greater omental tissue. AGS and HGC-27 GC cells were selected. The effect of ADORA2B on the invasion and migration of GC cells was examined using cell scratch and transwell assays. The effect of ADORA2B on the expression of EMT marker proteins (β-catenin, N-cadherin, and vimentin) in GC cells was measured by cellular immunohistochemistry, immunofluorescence, and Western blot. The effects of an ADORA2B inhibitor combined with cisplatin on EMT markers in GC cells were further explored. The expression levels of ADORA2B in GC tissue, metastatic greater omental tissue, and lymphatic metastasis tissue were significantly higher than those in paracancerous tissue, and ADORA2B was associated with lymph node metastasis and invasion. ADORA2B significantly regulated the invasion and migration ability of GC cells and the expression levels of EMT marker proteins. The combination of an ADORA2B antagonist (PSB-603) and cisplatin had a more significant effect on reversing the expression of EMT marker proteins. ADORA2B was overexpressed in GC tissue, metastatic greater omental tissue, and metastatic lymph node tissue. ADORA2B regulated the expression of EMT marker proteins in GC cells and affected GC cell metastasis. Antagonizing ADORA2B expression increased the efficacy of cisplatin treatment.
Collapse
Affiliation(s)
- Honghong Wang
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Fengmei Tan
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yuanyi Xu
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yanmei Ma
- The First Hospital of Yulin, Yulin, Shanxi, China
| | - Yan Li
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Hongyan Xiao
- People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia Hui Autonomous Region, China,Hongyan Xiao, Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, No. 301 Zhengyuan North Street, Jinfeng District, Yinchuan, Ningxia Hui Autonomous Region 750001, China.
| |
Collapse
|
5
|
Odri GA, Tchicaya-Bouanga J, Yoon DJY, Modrowski D. Metastatic Progression of Osteosarcomas: A Review of Current Knowledge of Environmental versus Oncogenic Drivers. Cancers (Basel) 2022; 14:cancers14020360. [PMID: 35053522 PMCID: PMC8774233 DOI: 10.3390/cancers14020360] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/06/2022] [Accepted: 01/10/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Osteosarcomas are heterogeneous bone tumors with complex genetic and chromosomic alterations. The numerous patients with metastatic osteosarcoma have a very poor prognosis, and only those who can have full surgical resection of the primary tumor and of all the macro metastasis can survive. Despite the recent improvements in prediction and early detection of metastasis, big efforts are still required to understand the specific mechanisms of osteosarcoma metastatic progression, in order to reveal novel therapeutic targets. Abstract Metastases of osteosarcomas are heterogeneous. They may grow simultaneously with the primary tumor, during treatment or shortly after, or a long time after the end of the treatment. They occur mainly in lungs but also in bone and various soft tissues. They can have the same histology as the primary tumor or show a shift towards a different differentiation path. However, the metastatic capacities of osteosarcoma cells can be predicted by gene and microRNA signatures. Despite the identification of numerous metastasis-promoting/predicting factors, there is no efficient therapeutic strategy to reduce the number of patients developing a metastatic disease or to cure these metastatic patients, except surgery. Indeed, these patients are generally resistant to the classical chemo- and to immuno-therapy. Hence, the knowledge of specific mechanisms should be extended to reveal novel therapeutic approaches. Recent studies that used DNA and RNA sequencing technologies highlighted complex relations between primary and secondary tumors. The reported results also supported a hierarchical organization of the tumor cell clones, suggesting that cancer stem cells are involved. Because of their chemoresistance, their plasticity, and their ability to modulate the immune environment, the osteosarcoma stem cells could be important players in the metastatic process.
Collapse
Affiliation(s)
- Guillaume Anthony Odri
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
- Service de Chirurgie Orthopédique et Traumatologique, DMU Locomotion, Lariboisière Hospital, 75010 Paris, France
- Correspondence:
| | - Joëlle Tchicaya-Bouanga
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
| | - Diane Ji Yun Yoon
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
- Service de Chirurgie Orthopédique et Traumatologique, DMU Locomotion, Lariboisière Hospital, 75010 Paris, France
| | - Dominique Modrowski
- INSERM UMR 1132, Biologie de l’os et du Cartilage (BIOSCAR), Lariboisière Hospital, UFR de Médecine, Faculté de Santé, University of Paris, 75010 Paris, France; (J.T.-B.); (D.J.Y.Y.); (D.M.)
| |
Collapse
|
6
|
Zhao B, Tang M, Lv Y. Shear stress regulates the migration of suspended breast cancer cells by nuclear lamina protein A/C and large tumor suppressor through yes-associated protein. Hum Cell 2022; 35:583-598. [PMID: 34984662 DOI: 10.1007/s13577-021-00666-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 12/22/2021] [Indexed: 12/30/2022]
Abstract
Breast cancer is life threatening among women because its migration by hematogenous metastasis, where, besides biochemical cues, breast circulating tumor cells (CTCs) expose to suspension state and shear stress. However, the combined effects of these mechanical factors on CTCs migration were unclear. Here, suspension state and shear stress were loaded to breast tumor cells (BTCs) to mimic two mechanical cues in the mechanical environment of breast CTCs and the mechanobiological mechanism of suspension state and shear stress regulating the migration of (BTCs) was investigated. The migration and nuclear lamina protein A/C (Lamin A/C) accumulation were enhanced in MDA-MB-231 and SK-BR-3 BTCs exposed to shear stress though lower than that of suspended cells with different yes-associated protein (YAP) subcellular localization. Knockdown of LMNA downregulated and upregulated YAP targets in suspended BTCs and BTCs exposed to shear stress, respectively, which inhibited MDA-MB-231 BTCs migration in vitro and in vivo. Large tumor suppressor (LATS) responded to suspension state and shear stress, knockdown of which decreased the migration of MDA-MB-231 BTCs. These findings uncover the mechanobiological mechanism that suspension state and shear stress antagonistically promote BTCs migration by Lamin A/C and LATS through YAP and the potential for targeting YAP in CTCs prognosis. Shear stress regulates suspended breast cancer cells migration by Lamin A/C and LATS through YAP.
Collapse
Affiliation(s)
- Boyuan Zhao
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Mei Tang
- Mechanobiology and Regenerative Medicine Laboratory, Bioengineering College, Chongqing University, Chongqing, 400044, People's Republic of China
| | - Yonggang Lv
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Jiangxia District, No. 1 Sunshine Avenue, Wuhan, 430200, Hubei Province, People's Republic of China.
| |
Collapse
|