1
|
Masi M, Poppi L, Previtali V, Nelson SR, Wynne K, Varignani G, Falchi F, Veronesi M, Albanesi E, Tedesco D, De Franco F, Ciamarone A, Myers SH, Ortega JA, Bagnolini G, Ferrandi G, Farabegoli F, Tirelli N, Di Stefano G, Oliviero G, Walsh N, Roberti M, Girotto S, Cavalli A. Investigating synthetic lethality and PARP inhibitor resistance in pancreatic cancer through enantiomer differential activity. Cell Death Discov 2025; 11:106. [PMID: 40091075 PMCID: PMC11911456 DOI: 10.1038/s41420-025-02382-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 01/16/2025] [Accepted: 02/28/2025] [Indexed: 03/19/2025] Open
Abstract
The RAD51-BRCA2 interaction is central to DNA repair through homologous recombination. Emerging evidence indicates RAD51 overexpression and its correlation with chemoresistance in various cancers, suggesting RAD51-BRCA2 inhibition as a compelling avenue for intervention. We previously showed that combining olaparib (a PARP inhibitor (PARPi)) with RS-35d (a BRCA2-RAD51 inhibitor) was efficient in killing pancreatic ductal adenocarcinoma (PDAC) cells. However, RS-35d impaired cell viability even when administered alone, suggesting potential off-target effects. Here, through multiple, integrated orthogonal biological approaches in different 2D and 3D PDAC cultures, we characterised RS-35d enantiomers, in terms of mode of action and single contributions. By differentially inhibiting both RAD51-BRCA2 interaction and sensor kinases ATM, ATR and DNA-PK, RS-35d enantiomers exhibit a 'within-pathway synthetic lethality' profile. To the best of our knowledge, this is the first reported proof-of-concept single small molecule capable of demonstrating this built-in synergism. In addition, RS-35d effect on BRCA2-mutated, olaparib-resistant PDAC cells suggests that this compound may be effective as an anticancer agent possibly capable of overcoming PARPi resistance. Our results demonstrate the potential of synthetic lethality, with its diversified applications, to propose new and concrete opportunities to effectively kill cancer cells while limiting side effects and potentially overcoming emerging drug resistance.
Collapse
Affiliation(s)
- Mirco Masi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Laura Poppi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Viola Previtali
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Shannon R Nelson
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Kieran Wynne
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
- Conway Institute of Biomolecular & Biomedical Research, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Giulia Varignani
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Federico Falchi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Marina Veronesi
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Ennio Albanesi
- Department of Neuroscience and Brain Technologies, Neurofacility, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Daniele Tedesco
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), I-40129, Bologna, Italy
| | | | - Andrea Ciamarone
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Samuel H Myers
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Jose Antonio Ortega
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Greta Bagnolini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Giovanni Ferrandi
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Fulvia Farabegoli
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Nicola Tirelli
- Laboratory for Polymers and Biomaterials, Italian Institute of Technology IIT, 16163, Genoa, Italy
| | - Giuseppina Di Stefano
- Department of Surgical and Medical Sciences, University of Bologna, 40126, Bologna, Italy
| | - Giorgio Oliviero
- Systems Biology Ireland, School of Medicine, University College Dublin, D04 V1W8, Dublin, Ireland
| | - Naomi Walsh
- National Institute for Cellular Biotechnology, School of Biotechnology, Dublin City University, D09 NR58, Dublin, Ireland
| | - Marinella Roberti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy
| | - Stefania Girotto
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Structural Biophysics Facility, Italian Institute of Technology IIT, 16163, Genoa, Italy.
| | - Andrea Cavalli
- Computational and Chemical Biology, Italian Institute of Technology IIT, 16163, Genoa, Italy.
- Department of Pharmacy and Biotechnology, University of Bologna, 40126, Bologna, Italy.
- Centre Européen de Calcul Atomique et Moléculaire (CECAM), Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland.
| |
Collapse
|
2
|
Tao Y, Wu Y, Shen R, He S, Miao X. Role of four and a half LIM domain protein 1 in tumors (Review). Oncol Lett 2025; 29:37. [PMID: 39512507 PMCID: PMC11542161 DOI: 10.3892/ol.2024.14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 10/16/2024] [Indexed: 11/15/2024] Open
Abstract
As a cytoskeletal protein, the four and a half LIM domain protein 1 (FHL1) is widely expressed in various cells, particularly skeletal and cardiac muscle cells. FHL1 is involved in the development of the skeletal muscle and myocardium, regulations of gene transcription and thyroid function, and other physiological processes. Its expression is closely related to numerous diseases, such as skeletal muscle disease and viral infections. With the advances in research, the role of FHL1 in the development of tumors is also being revealed. The mechanism of FHL1 in the regulation of tumor growth is complex and is becoming a research focus. It is also expected to become a potential target for tumor therapy. Therefore, the present article reviewed the progress in research on the role of FHL1 in cancer.
Collapse
Affiliation(s)
- Yun Tao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
- Department of Clinical Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226006, P.R. China
| | - Yaxun Wu
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Rong Shen
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Song He
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| | - Xiaobing Miao
- Department of Pathology, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu 226361, P.R. China
| |
Collapse
|
4
|
Cai Y, Xia L, Zhu H, Cheng H, Tian Y, Sun L, Wang J, Lu N, Wang J, Chen Y. MiR-3682-3p promotes esophageal cancer progression by targeting FHL1 and activating the Wnt/β-catenin signaling pathway. Cell Signal 2024; 119:111155. [PMID: 38565413 DOI: 10.1016/j.cellsig.2024.111155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/13/2024] [Accepted: 03/29/2024] [Indexed: 04/04/2024]
Abstract
BACKGROUND Esophageal cancer (EC) is highly ranked among all cancers in terms of its incidence and mortality rates. MicroRNAs (miRNAs) are considered to play key regulatory parts in EC. Multiple research studies have indicated the involvement of miR-3682-3p and four and a half LIM domain protein 1 (FHL1) in the achievement of tumors. The aim of this research was to clarify the significance of these genes and their possible molecular mechanism in EC. METHODS Data from a database and the tissue microarray were made to analyze the expression and clinical significance of miR-3682-3p or FHL1 in EC. Reverse transcription quantitative PCR and Western blotting were used to detect the expression levels of miR-3682-3p and FHL1 in EC cells. CCK8, EdU, wound healing, Transwell, flow cytometry, and Western blotting assays were performed to ascertain the biological roles of miR-3682-3p and FHL1 in EC cells. To confirm the impact of miR-3682-3p in vivo, a subcutaneous tumor model was created in nude mice. The direct interaction between miR-3682-3p and FHL1 was demonstrated through a luciferase assay, and the western blotting technique was employed to assess the levels of crucial proteins within the Wnt/β-catenin pathway. RESULTS The noticeable increase in the expression of miR-3682-3p and the decrease in the expression of FHL1 were observed, which correlated with a negative impact on the patients' overall survival. Upregulation of miR-3682-3p expression promoted the growth and metastasis of EC, while overexpression of FHL1 partially reversed these effects. Finally, miR-3682-3p motivates the Wnt/β-catenin signal transduction by directly targeting FHL1. CONCLUSION MiR-3682-3p along the FHL1 axis activated the Wnt/β-catenin signaling pathway and thus promoted EC malignancy.
Collapse
Affiliation(s)
- Yuxin Cai
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Lingling Xia
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hangjia Zhu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hao Cheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yuanyuan Tian
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China; Central Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Liying Sun
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jun Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Ning Lu
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jing Wang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Yongshun Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
5
|
Zhang M, Zhu J, Zhang P, Li L, Min M, Li T, He W. Development and validation of cancer-associated fibroblasts-related gene landscape in prognosis and immune microenvironment of bladder cancer. Front Oncol 2023; 13:1174252. [PMID: 37397364 PMCID: PMC10309557 DOI: 10.3389/fonc.2023.1174252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Backgrounds Bladder cancer (BLCA) is one of the most prevalent cancers of the genitourinary system, the clinical outcomes of patients with BLCA are bad, and the morbidity rate is high. One of the key components of the tumor microenvironment (TME) is cancer-associated fibroblasts (CAFs) which are critically involved in BLCA tumorigenesis. Previous studies have shown the involvement of CAFs in tumor growth, cancer progression, immune evasion, angiogenesis, and chemoresistance in several cancers such as breast, colon, pancreatic, ovarian, and prostate cancers. However, only a few studies have shown the role of CAFs in the occurrence and development of BLCA. Methods We have retrieved and merged the data on RNA-sequencing of patients with BLCA from databases including "the Cancer Genome Atlas" and "Gene Expression Omnibus." Next, we compared the differences in CAFs-related genes (CRGs) expression between normal and BLCA tissues. Based on CRGs expression, we randomly divided patients into two groups. Next, we determined the correlation between CAFs subtypes and differentially expressed CRGs (DECRGs) between the two subtypes. Furthermore, the "Gene Ontology" and "Kyoto Encyclopedia of Genes and Genomes pathway" enrichment analyses were conducted to determine the functional characteristics between the DECRGs and clinicopathology. Results We identified five genes (POF1B, ARMCX1, ALDOC, C19orf33, and KRT13) using multivariate COX regression and "Least Absolute Shrinkage and Selection Operator (LASSO) COX regression analysis" for developing a prognostic model and calculating the CRGs-risk score. The TME, mutation, CSC index, and drug sensitivity were also analyzed. Conclusion We constructed a novel five- CRGs prognostic model, which sheds light on the roles of CAFs in BLCA.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Junlong Zhu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Pan Zhang
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Lingxun Li
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Min Min
- Department of Urology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, China
| | - Tinghao Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
6
|
Luo Q, Liu J, Fu Q, Zhang X, Yu P, Liu P, Zhang J, Tian H, Chen S, Zhang H, Qin T. Identifying cancer cell‐secreted proteins that activate cancer‐associated fibroblasts as prognostic factors for patients with pancreatic cancer. J Cell Mol Med 2022; 26:5657-5669. [DOI: 10.1111/jcmm.17596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 08/26/2022] [Accepted: 09/30/2022] [Indexed: 11/29/2022] Open
Affiliation(s)
- Qiankun Luo
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiayin Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Qiang Fu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Xu Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pengfei Yu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Pan Liu
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
| | - Jiali Zhang
- Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Huiyuan Tian
- Department of Research and Discipline Development Henan Provincial People's Hospital, Zhengzhou University People's Hospital Zhengzhou China
| | - Song Chen
- Translational Research Institute, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, and Molecular Pathology Center Academy of Medical Sciences, Zhengzhou University Zhengzhou China
| | - Hongwei Zhang
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| | - Tao Qin
- Department of Hepatobilliary and Pancreatic surgery Zhengzhou University People's Hospital, Henan Provincial People's Hospital Zhengzhou China
- Henan University People's Hospital Zhengzhou China
| |
Collapse
|