1
|
Wang X, Shi B, Xia C, Hou M, Wang J, Tian A, Shi C, Ma C. Poly-L-lysine functionalized silica membrane-enhanced colorimetric loop-mediated isothermal amplification for sensitive and rapid detection of Vibrio parahaemolyticus. Talanta 2025; 288:127744. [PMID: 39961248 DOI: 10.1016/j.talanta.2025.127744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/04/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025]
Abstract
Traditional detection of foodborne pathogen relies on advanced analyzers, which is inadequate for the rapid control of infections, particularly in resource-limited regions, highlighting the necessity of developing detection systems for point-of-care testing (POCT). Herein, taking Vibrio parahaemolyticus as a detecting target, we reported poly-L-lysine functionalized silica membrane (PL-SM) based loop-mediated isothermal amplification (pLAMP) platform for sensitive on-site detection. This platform utilized PL-SM for DNA capture driven by the electrostatic attraction between protonated amine groups of poly-L-lysine and negatively charged phosphate groups of DNA, followed by introducing a colorimetric indicator calcein for LAMP amplification. After optimization, the colorimetric mode of pLAMP allowed the screening of V. parahaemolyticus with the visual limit of detection (vLOD) of 1 CFU/mL in 50 min, 1000-fold lower than methods based on commercial kits. Validation was performed using 174 seafoods, which was 97 % concordant to those of real-time PCR. Furthermore, an image processing approach was developed based on the analysis of the RGB under UV light. Paired with a smartphone, the objective analytical method could be readily conducted in the field. Thus, we propose a sensitive and visual detection platform, which may play a crucial role in improving testing efficiency and accuracy in food safety, medical diagnostics, and environmental monitoring.
Collapse
Affiliation(s)
- Xiujuan Wang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Binghui Shi
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Cengceng Xia
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Mengnan Hou
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Jingying Wang
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Anning Tian
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, and Department of Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, PR China
| | - Cuiping Ma
- Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, College of Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
2
|
Kumar N, Kumari M, Chander D, Dogra S, Chaubey A, Arun RK. Miniaturized electrophoresis: An integrated microfluidic cartridge with functionalized hydrogel-assisted LAMP for sample-to-answer analysis of nucleic acid. BIOMICROFLUIDICS 2024; 18:064104. [PMID: 39649103 PMCID: PMC11620794 DOI: 10.1063/5.0211812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/07/2024] [Indexed: 12/10/2024]
Abstract
Accurate detection of pathogenic nucleic acids is crucial for early diagnosis, effective treatment, and containment of infectious diseases. It facilitates the timely identification of pathogens, aids in monitoring disease outbreaks, and helps prevent the spread of infections within healthcare settings and communities. We developed a multi-layered, paper-based microfluidic and miniaturized electrophoresis system for rapid nucleic acid extraction, separation, amplification, and detection, designed for resource-limited settings. Constructed from acrylic, transparency film, pressure-sensitive adhesion, and Whatman paper using a CO2 laser, the setup simplifies traditional methods and eliminates the need for complex equipment. DNA extraction and purification are achieved using Zweifach-Fung bifurcation and Fahraeus effect principles, with detection via a hydrogel-assisted colorimetric isothermal reverse transcriptase-loop-mediated isothermal amplification technique. The system accurately identified the SARS-CoV-2 N-gene and β-actin human gene, validated by a compact electrophoresis setup. In clinical validation with 12 patient specimens, the system demonstrated a positive predictive agreement of 83.0% and a negative predictive agreement of 100%. The system achieves a limit of detection of 1 copy/μl and can potentially transform nucleic acid detection assays in healthcare settings. This study addresses key challenges in nucleic acid detection, such as ensuring sample quality and quantity, reducing reliance on sophisticated equipment, preventing contamination, simplifying procedures, and providing rapid and accurate diagnostics for emerging pathogens.
Collapse
Affiliation(s)
- Natish Kumar
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, India
| | - Monika Kumari
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, India
| | - Devtulya Chander
- Fermentation and Microbial Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Sandeep Dogra
- Department of Microbiology, Government Medical College, Jammu 180001, India
| | - Asha Chaubey
- Fermentation and Microbial Biotechnology Division, CSIR—Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ravi Kumar Arun
- Department of Chemical Engineering, Indian Institute of Technology, Jammu 181221, India
| |
Collapse
|
3
|
Sen A, Masetty M, Weerakoon S, Morris C, Yadav JS, Apewokin S, Trannguyen J, Broom M, Priye A. Paper-based loop-mediated isothermal amplification and CRISPR integrated platform for on-site nucleic acid testing of pathogens. Biosens Bioelectron 2024; 257:116292. [PMID: 38653014 DOI: 10.1016/j.bios.2024.116292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/02/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/μL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.
Collapse
Affiliation(s)
- Anindita Sen
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Manaswini Masetty
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Sasanka Weerakoon
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Calum Morris
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand
| | - Jagjit S Yadav
- Department of Environmental & Public Health Sciences, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Senu Apewokin
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Jennifer Trannguyen
- Division of Infectious Diseases, College of Medicine, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Murray Broom
- DNAiTECH Ltd, Marlborough Research Center, 2650 State Highway 1, Grovetown, Blenheim, Marlborough, 7202, New Zealand.
| | - Aashish Priye
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, USA; Digital Futures, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
4
|
Ahuja S, Tallur S, Kondabagil K. Simultaneous microbial capture and nucleic acid extraction from wastewater with minimal pre-processing and high recovery efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 918:170347. [PMID: 38336063 DOI: 10.1016/j.scitotenv.2024.170347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/22/2023] [Accepted: 01/19/2024] [Indexed: 02/12/2024]
Abstract
The COVID-19 pandemic accelerated research towards developing low-cost assays for automated urban wastewater monitoring assay that can be integrated into an environmental surveillance system for early warning of frequent disease outbreaks and future pandemics. Microbial concentration is one of the most challenging steps in wastewater surveillance, due to the sample heterogeneity and low pathogen load. Keeping in mind the requirements of large-scale testing in densely populated low- or middle-income countries (LMICs), such assays would need to be low-cost and have rapid turnaround time with high recovery efficiency. In this study, two such methods are presented and evaluated against commercially available kits for pathogen detection in wastewater. The first method utilizes paper dipsticks while the second method comprises of a PTFE membrane filter (PMF) integrated with a peristaltic pump. Both methods were used to concentrate and isolate nucleic acids from different microbes such as SARS-CoV-2, pepper mild mottle virus (PMMoV), bacteriophage Phi6, and E. coli from wastewater samples with minimal or no sample pre-processing. While the paper dipstick method is suitable for sub-milliliter sample volume, the PMF method can be used with larger volumes of wastewater sample (40 mL) and can detect multiple microbes with recovery efficiency comparable to commercially available kits.
Collapse
Affiliation(s)
- Shruti Ahuja
- Centre for Research in Nanotechnology & Science (CRNTS), IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Siddharth Tallur
- Department of Electrical Engineering, IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| | - Kiran Kondabagil
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, Maharashtra, India.
| |
Collapse
|
5
|
Tang R, Yan X, Li M, Du A, Yang H, Yin H, Xie M. A wash-free, elution-free and low protein adsorption paper-based material for nucleic acid extraction. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023. [PMID: 37366244 DOI: 10.1039/d3ay00695f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Nucleic acid detection technologies have been widely utilized for various diseases. Conventional laboratory tests are less suitable for use in resource-limited settings as they are time-consuming, high-cost, complex, and heavily dependent on benchtop equipment. Rapid nucleic acid detection methods that consist of rapid nucleic acid extraction steps could overcome these challenges. A paper-based platform has been utilized to develop various rapid nucleic acid extraction methods owing to its cost-effectiveness, portability, and easy-modification. However, the existing paper-based nucleic acid extraction technologies mainly focus on improving the adsorption capacity of nucleic acids without reducing the non-specific adsorption capacity of proteins. In this study, paper-based nucleic acid extraction technology with wash-free, elution-free, and low protein adsorption was developed. The fabrication of paper involves the mixing of polyethylene glycol (PEG)-modified cotton fiber, chitosan (COS)-modified cotton fiber, and cotton fiber to form PEG-modified cotton fiber/chitosan-modified cotton fiber/cotton fiber (PEG-CF/COS-CF/CF) paper by the wet molding method. The result showed that PEG-CF/COS-CF/CF paper has a desirable pore size (23.9 ± 4.03 μm), good mechanical strength (dry: 9.37 Mpa and wet: 0.28 Mpa), and hydrophilicity (contact angle: 42.6° ± 0.36°). NH3+ groups of COS and OH- groups of PEG were observed on its surface and the adsorption efficiency of nucleic acid in TE buffer was 42.48% ± 0.30%. The limit of detection of pure DNA with this PEG-CF/COS-CF/CF paper by qPCR was as low as 25 ng. Additionally, this platform could successfully extract nucleic acid from 30 μL of a saliva sample, highlighting its potential use for clinical sample testing. The proposed paper-based nucleic acid extraction platform shows tremendous potential for disease diagnosis in resource-limited settings.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Xueyan Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Min Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Aoqi Du
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| | - Hui Yang
- School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, People's Republic of China
| | - Huancai Yin
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Mingyue Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China.
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an 710021, P. R. China
| |
Collapse
|
6
|
Tang R, Xie M, Yan X, Qian L, Giesy JP, Xie Y. A nitrocellulose/cotton fiber hybrid composite membrane for paper-based biosensor. CELLULOSE (LONDON, ENGLAND) 2023; 30:1-13. [PMID: 37360890 PMCID: PMC10238769 DOI: 10.1007/s10570-023-05288-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/24/2023] [Indexed: 06/28/2023]
Abstract
Nitrocellulose (NC) membrane was fabricated and tested for its potential use in various paper-based biosensors for use in point-of-care testing. However, contemporary technologies are complex, expensive, non-scalable, limited by conditions, and beset with potentially adverse effects on the environment. Herein, we proposed a simple, cost-effective, scalable technology to prepare nitrocellulose/cotton fiber (NC/CF) composite membranes. The NC/CF composite membranes with a diameter of 20 cm were fabricated in 15 min using papermaking technology, which contributes to scalability in the large-scale production of these composites. Compared with existing commercial NC membranes, the NC/CF composite membrane is characterized by small pore size (3.59 ± 0.19 μm), low flow rate (156 ± 55 s/40 mm), high dry strength (up to 4.04 MPa), and wet strength (up to 0.13 MPa), adjustable hydrophilic-hydrophobic (contact angles ranged from 29 ± 4.6 to 82.8 ± 2.4°), the good adsorption capacity of protein (up to 91.92 ± 0.07 μg). After lateral flow assays (LFAs) detection, the limit of detection is 1 nM, which is similar to commercial NC membrane (Sartorius CN 140). We envision the NC/CF composite membrane as a promising material for paper-based biosensors of point-of-care testing applications.
Collapse
Affiliation(s)
- Ruihua Tang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Mingyue Xie
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Xueyan Yan
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - Liwei Qian
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
- National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi’an, 710021 People’s Republic of China
| | - John P. Giesy
- Toxicology Center, University of Saskatchewan, 44 Campus Dr, Saskatoon, S7N 5B3 Saskatchewan Canada
- Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK S7N 5B4 Canada
- Department of Integrative Biology and Center for Integrative Toxicology, Michigan State University, East Lansing, MI 48824 USA
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798-7266 USA
| | - Yuwei Xie
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Sciences, Nanjing, 210042 China
| |
Collapse
|
7
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
8
|
Ma JY, Wang XF, Peng C, Chen XY, Xu XL, Wei W, Yang L, Cai J, Xu JF. SMART: On-Site Rapid Detection of Nucleic Acid from Plants, Animals, and Microorganisms in under 25 Minutes. BIOSENSORS 2023; 13:82. [PMID: 36671917 PMCID: PMC9855345 DOI: 10.3390/bios13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The rapid on-site nucleic acid detection method is urgently required in many fields. In this study, we report a portable and highly integrated device for DNA detection that combines ultrafast DNA adsorption and rapid DNA amplification. The device, known as silicon film mediated recombinase polymerase amplification (RPA) for nucleic acid detection (SMART), can detect target DNA in less than 25 min from plants, animals, and microbes. Utilizing SMART, transgenic maize was rapidly detected with high selectivity and sensitivity. The sensitivity threshold of the SMART for transgenic maize genomic DNA was 50 copies. The detection results of genuine samples containing plants, animals, and microbes by SMART were consistent with the conventional polymerase chain reaction (PCR) method, demonstrating the high robustness of SMART. Additionally, SMART does not require expensive equipment and is fast, affordable, and user-friendly, making it suited for the broad-scale on-site detection of nucleic acids.
Collapse
Affiliation(s)
- Jun-Yuan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Xiao-Fu Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Cheng Peng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiao-Yun Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Xiao-Li Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Lei Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jian Cai
- College of Biological and Food Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Jun-Feng Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Hangzhou 310021, China
| |
Collapse
|
9
|
Role of Paper-Based Sensors in Fight against Cancer for the Developing World. BIOSENSORS 2022; 12:bios12090737. [PMID: 36140122 PMCID: PMC9496559 DOI: 10.3390/bios12090737] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 08/25/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Cancer is one of the major killers across the globe. According to the WHO, more than 10 million people succumbed to cancer in the year 2020 alone. The early detection of cancer is key to reducing the mortality rate. In low- and medium-income countries, the screening facilities are limited due to a scarcity of resources and equipment. Paper-based microfluidics provide a platform for a low-cost, biodegradable micro-total analysis system (µTAS) that can be used for the detection of critical biomarkers for cancer screening. This work aims to review and provide a perspective on various available paper-based methods for cancer screening. The work includes an overview of paper-based sensors, the analytes that can be detected and the detection, and readout methods used.
Collapse
|