1
|
Leptin alleviates endoplasmic reticulum stress induced by cerebral ischemia/reperfusion injury via the PI3K/Akt signaling pathway. Biosci Rep 2022; 42:232083. [PMID: 36367210 PMCID: PMC9744719 DOI: 10.1042/bsr20221443] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cerebral ischemic/reperfusion injury (CIRI) is a key factor for the prognosis of ischemic stroke (IS), the leading disease in terms of global disability and fatality rates. Recent studies have shown that endoplasmic reticulum stress (ERS) may be a target against CIRI and that leptin, a peptide hormone, has neuroprotective activity to mitigate CIRI. METHODS An in vitro CIRI model was induced in primary cortical neurons by oxygen-glucose deprivation and reoxygenation (OGD/R) after pretreatment with LY294002 (10 µmol/L) and/or leptin (0.4 mg/L), and cell viability, neuronal morphology and endoplasmic reticulum (ER) dysfunction were evaluated. An in vivo CIRI model was established in rats by middle cerebral artery occlusion and reperfusion (MCAO/R) after the injection of LY294002 (10 μmol/L) and/or leptin (1 mg/kg), and neurological function, infarct volume, cerebral pathological changes, the expression of ERS-related proteins and cell apoptosis were examined. RESULTS In vitro, leptin treatment improved the cell survival rate, ameliorated neuronal pathological morphology and alleviated OGD/R-induced ERS. In vivo, administration of leptin significantly reduced the infarct volume, neurological deficit scores and neuronal apoptosis as well as pathological alterations. In addition, leptin suppressed MCAO/R-induced ERS and may decrease apoptosis by inhibiting ERS-related death and caspase 3 activation. It also regulated expression of the antiapoptotic protein Bcl-2 and the proapoptotic protein Bax in the cortex. Furthermore, the inhibitory effect of leptin on ERS was significantly decreased by the effective phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002. CONCLUSIONS These results confirm that ERS plays an important role in CIRI and that leptin can inhibit the activation of ERS through the PI3K/Akt pathway, thereby alleviating CIRI. These findings provide novel therapeutic targets for IS.
Collapse
|
2
|
Szlasa W, Szewczyk A, Drąg-Zalesińska M, Czapor-Irzabek H, Michel O, Kiełbik A, Cierluk K, Zalesińska A, Novickij V, Tarek M, Saczko J, Kulbacka J. Mechanisms of curcumin-based photodynamic therapy and its effects in combination with electroporation: An in vitro and molecular dynamics study. Bioelectrochemistry 2021; 140:107806. [PMID: 33819839 DOI: 10.1016/j.bioelechem.2021.107806] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 01/10/2023]
Abstract
Photodynamic therapy (PDT) and electrochemotherapy (ECT) are two methods designed to enhance the anticancer potential of various drugs. Various clinical trials proved the efficacy of both ECT and PDT in melanoma treatment. Curcumin is a natural polyphenolic compound with high anticancer potential against melanoma due to its light absorption properties and toxicity towards cancer cells; however, high reactivity and amphipathic structure of curcumin are limiting its utility. This study aimed to propose the most effective protocol for antimelanoma combination of both therapies (PDT and ECT) in the context of curcumin. The in vitro studies were carried on melanotic melanoma (A375), amelanotic melanoma (C32) and fibroblast (HGF) cell lines. In molecular dynamics studies curcumin presented the single-layer localization in the water-membrane interphase. Further, the mass spectrometry studies exposed that during the PDT treatment curcumin is degraded to vanillin, feruloylmethane, and ferulic acid. Instant ECT with curcumin followed by PDT is the most efficient approach due to its selective genotoxicity towards malignant cells. The metabolic activity of fibroblasts decreased, however, at the same time the fragmentation of DNA did not occur. Additionally, instant PDT with curcumin followed by ECT after 3 h of incubation was a therapy selective towards melanotic melanoma.
Collapse
Affiliation(s)
- Wojciech Szlasa
- Faculty of Medicine, Wroclaw Medical University, Wroclaw, Poland.
| | - Anna Szewczyk
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland; Department Human Morphology and Embryology, Division Histology and Embryology, Wroclaw Medical University, Wroclaw, Poland
| | | | - Hanna Czapor-Irzabek
- Laboratory of Elemental Analysis and Structural Research, Wroclaw Medical University, Borowska 211A, Wroclaw 50-556, Poland
| | - Olga Michel
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Karolina Cierluk
- Faculty of Chemistry, Wroclaw University of Science and Technology, Wroclaw, Poland
| | | | - Vitalij Novickij
- Institute of High Magnetic Fields, Vilnius Gediminas Technical University, Lithuania
| | - Mounir Tarek
- Université de Lorraine, CNRS, LPCT, F-54000 Nancy, France
| | - Jolanta Saczko
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Julita Kulbacka
- Department of Molecular and Cellular Biology, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland.
| |
Collapse
|
3
|
Liu L, Chen M, Lin K, Xiang X, Zheng Y, Zhu S. Inhibiting Caspase-12 Mediated Inflammasome Activation protects against Oxygen-Glucose Deprivation Injury in Primary Astrocytes. Int J Med Sci 2020; 17:1936-1945. [PMID: 32788872 PMCID: PMC7415396 DOI: 10.7150/ijms.44330] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Stroke is one of the leading causes of death worldwide. Accumulating evidence suggests that NLRP3 inflammasome activation plays an important role in ischemic stroke injury. However, the existence of the NLRP3 inflammasome in astrocytes remains controversial. In this study, we demonstrated the presence of the NLRP3 inflammasome in primary mouse astrocytes and investigated the role of caspase-12 in NLRP3 inflammasome activation and cell injury in an in vitro astrocyte oxygen-glucose deprivation (OGD) model. Astrocytes exposed to 2, 3, and 4 h of OGD exhibited increased cell injury and apoptosis, and the protein levels of caspase-12, cleaved caspase-3, NLRP3 inflammasome components, and IL-1β were also significantly elevated. Interestingly, pretreatment with the caspase-12-specific inhibitor Z-ATAD-FMK attenuated cell injury and apoptosis and decreased the levels of NLRP3, caspase-1, IL-1β, and cleaved caspase-3 in the OGD group. In conclusion, Z-ATAD-FMK protected astrocytes against OGD-induced cell death and inhibited NLPR3-inflammasome activation. Our results indicate that caspase-12 and its potential regulation of NLRP3 inflammasome activation might be a promising target for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou 310003, People's Republic of China
| |
Collapse
|
4
|
Rodríguez-Martínez E, Nava-Ruiz C, Escamilla-Chimal E, Borgonio-Perez G, Rivas-Arancibia S. The Effect of Chronic Ozone Exposure on the Activation of Endoplasmic Reticulum Stress and Apoptosis in Rat Hippocampus. Front Aging Neurosci 2016; 8:245. [PMID: 27826237 PMCID: PMC5078609 DOI: 10.3389/fnagi.2016.00245] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/07/2016] [Indexed: 11/13/2022] Open
Abstract
The chronic exposure to low doses of ozone, like in environmental pollution, leads to a state of oxidative stress, which has been proposed to contribute to neurodegenerative disorders, including Alzheimer's disease (AD). It induces an increase of calcium in the endoplasmic reticulum (ER), which produces ER stress. On the other hand, different studies show that, in diseases such as Alzheimer's, there exist disturbances in protein folding where ER plays an important role. The objective of this study was to evaluate the state of chronic oxidative stress on ER stress and its relationship with apoptotic death in the hippocampus of rats exposed to low doses of ozone. We used 108 male Wistar rats randomly divided into five groups. The groups received one of the following treatments: (1) Control (air); (2) Ozone (O3) 7 days; (3) O3 15 days; (4) O3 30 days; (5) O3 60 days; and (6) O3 90 days. Two hours after each treatment, the animals were sacrificed and the hippocampus was extracted. Afterwards, the tissue was processed for western blot and immunohistochemistry using the following antibodies: ATF6, 78 kDa glucose-regulated protein (GRP78) and caspase 12. It was also subjected to terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay and electronic microscopy. Our results show an increase in ATF6, GRP78 and caspase 12 as well as ER ultrastructural alterations and an increase of TUNEL positive cells after 60 and 90 days of exposure to ozone. With the obtained results, we can conclude that oxidative stress induced by chronic exposure to low doses of ozone leads to ER stress. ER stress activates ATF6 inducing the increase of GRP78 in the cytoplasm, which leads to the increase in the nuclear translocation of ATF6. Finally, the translocation creates a vicious cycle that, together with the activation of the cascade for apoptotic cell death, contributes to the maintenance of ER stress. These events potentially contribute in the neurodegeneration processes in diseases like AD.
Collapse
Affiliation(s)
- Erika Rodríguez-Martínez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM) Ciudad de Mexico, Mexico
| | - Concepcion Nava-Ruiz
- Laboratorio de Neuropatologia Experimental, Instituto Nacional de Neurologia y Neurocirugia Manuel Velasco Suarez Mexico City, Mexico
| | - Elsa Escamilla-Chimal
- Facultad de Ciencias, Departamento de Ecologia y Recursos Naturales, Universidad Nacional Autónoma de México (UNAM) Ciudad de Mexico, Mexico
| | - Gabino Borgonio-Perez
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM) Ciudad de Mexico, Mexico
| | - Selva Rivas-Arancibia
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM) Ciudad de Mexico, Mexico
| |
Collapse
|
5
|
Dlugos CA. ATF6 and caspase 12 expression in Purkinje neurons in acute slices from adult, ethanol-fed rats. Brain Res 2014; 1577:11-20. [PMID: 24976582 DOI: 10.1016/j.brainres.2014.06.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/19/2014] [Accepted: 06/21/2014] [Indexed: 12/30/2022]
Abstract
The purpose of this study was to determine, whether previously reported ethanol-induced alterations to the smooth endoplasmic reticulum (SER), predispose Purkinje neurons (PN) to thapsigargin-induced endoplasmic reticulum (ER) stress. Thapsigargin blocks the sarco/endoplasmic Ca(2+) ATPase pump (SERCA 2), depleting the SER of calcium. Forty-one, eight month old Fischer 344 male rats were treated with either the AIN (American Institute of Nutrition) liquid control or ethanol diets for 10 (n=14), 20 (n=10), or 40(n=17) weeks. At the end of treatment, acute cerebellar slices were prepared by standard means. Cerebellar slices were treated with thapsigargin or as controls for three hours in oxygenated (95% CO2, 5% O2) ACSF (artificial cerebrospinal fluid). Slices were then fixed in 4% paraformaldehyde and sectioned on a freezing microtome. Free floating sections were stained with antibodies against activating transcription factor 6 (ATF6) or activated caspase 12 and calbindin. Results showed a significant increase in the activated caspase+PN dendrites in the EF rats along with a significant interaction due to enhanced expression of activated caspase 12 at 20 weeks. The density of ATF6 labeling was not different between the EF and PF groups and was confined to the PN soma. The finding of activated caspase and ATF6 expression in PN within both the EF and PF groups supports the finding of thapsigargin-induced ER stress. The finding of increased activated caspase 12 in the dendrites supports an increased tendency to ER stress and other dendritic deficits in the ethanol rats.
Collapse
Affiliation(s)
- Cynthia A Dlugos
- Department of Pathology and Anatomical Sciences, 206 Farber Hall, School of Medicine and Biomedical Sciences, University at Buffalo, NY 14214-3000, USA.
| |
Collapse
|
6
|
Endoplasmic reticulum stress in cerebral ischemia. Neurochem Int 2014; 68:18-27. [DOI: 10.1016/j.neuint.2014.02.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 12/27/2013] [Accepted: 02/03/2014] [Indexed: 12/20/2022]
|
7
|
Loss of endoplasmic reticulum Ca2+ homeostasis: contribution to neuronal cell death during cerebral ischemia. Acta Pharmacol Sin 2013; 34:49-59. [PMID: 23103622 DOI: 10.1038/aps.2012.139] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The loss of Ca(2+) homeostasis during cerebral ischemia is a hallmark of impending neuronal demise. Accordingly, considerable cellular resources are expended in maintaining low resting cytosolic levels of Ca(2+). These include contributions by a host of proteins involved in the sequestration and transport of Ca(2+), many of which are expressed within intracellular organelles, including lysosomes, mitochondria as well as the endoplasmic reticulum (ER). Ca(2+) sequestration by the ER contributes to cytosolic Ca(2+) dynamics and homeostasis. Furthermore, within the ER Ca(2+) plays a central role in regulating a host of physiological processes. Conversely, impaired ER Ca(2+) homeostasis is an important trigger of pathological processes. Here we review a growing body of evidence suggesting that ER dysfunction is an important factor contributing to neuronal injury and loss post-ischemia. Specifically, the contribution of the ER to cytosolic Ca(2+) elevations during ischemia will be considered, as will the signalling cascades recruited as a consequence of disrupting ER homeostasis and function.
Collapse
|