1
|
Hu W, Tan J, Lin Y, Tao Y, Zhou Q. Bibliometric and visual analysis of ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications from 2000 to 2023. Heliyon 2024; 10:e31405. [PMID: 38807880 PMCID: PMC11130665 DOI: 10.1016/j.heliyon.2024.e31405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/30/2024] Open
Abstract
Background The pathogenesis of diabetes and its microvascular complications are intimately associated with renin angiotensin system dysregulation. Evidence suggests the angiotensin converting enzyme 2 (ACE2)/angiotensin 1-7 (Ang 1-7)/Mas receptor (MasR) axis regulates metabolic imbalances, inflammatory responses, reduces oxidative stress, and sustains microvascular integrity, thereby strengthening defences against diabetic conditions. This study aims to conduct a comprehensive analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications over the past two decades, focusing on key contributors, research hotspots, and thematic trends. Methods This cross-sectional bibliometric analysis of 349 English-language publications was performed using HistCite, VOSviewer, CiteSpace, and Bibliometrix R for visualization and metric analysis. Primary analytical metrics included publication count and keyword trend dynamics. Results The United States, contributing 105 articles, emerged as the most productive country, with the University of Florida leading institutions with 18 publications. Benter IF was the most prolific author with 14 publications, and Clinical Science was the leading journal with 13 articles. A total of 151 of the 527 author's keywords with two or more occurrences clustered into four major clusters: diabetic microvascular pathogenesis, metabolic systems, type 2 diabetes, and coronavirus infections. Keywords such as "SARS", "ACE2", "coronavirus", "receptor" and "infection" displayed the strongest citation bursts. The thematic evolution in this field expanded from focusing on the renin angiotensin system (2002-2009) to incorporating ACE2 and diabetes metabolism (2010-2016). The latter period (2017-2023) witnessed a significant surge in diabetes research, reflecting the impact of COVID-19 and associated conditions such as diabetic retinopathy and cardiomyopathy. Conclusions This scientometric study offers a detailed analysis of the ACE2/Ang 1-7/MasR axis in diabetes and its microvascular complications, providing valuable insights for future research directions.
Collapse
Affiliation(s)
- Weiwen Hu
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Jian Tan
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yeting Lin
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yulin Tao
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Qiong Zhou
- Department of Ophthalmology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi Province, People's Republic of China
| |
Collapse
|
2
|
Meng F, Fu J, Zhang L, Guo M, Zhuang P, Yin Q, Zhang Y. Function and therapeutic value of astrocytes in diabetic cognitive impairment. Neurochem Int 2023; 169:105591. [PMID: 37543309 DOI: 10.1016/j.neuint.2023.105591] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/25/2023] [Accepted: 08/01/2023] [Indexed: 08/07/2023]
Abstract
Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.
Collapse
Affiliation(s)
- Fanyu Meng
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Lin Zhang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Mengqing Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Pengwei Zhuang
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China
| | - Qingsheng Yin
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China.
| | - Yanjun Zhang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Haihe Laboratory of Modern Chinese Medicine, Tianjin, 301617, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China; National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300193, China.
| |
Collapse
|
3
|
Oyesiji Abiodun A, AlDosari DI, Alghamdi A, Aziz Al-Amri A, Ahmad S, Ola MS. Diabetes-induced stimulation of the renin-angiotensin system in the rat brain cortex. Saudi J Biol Sci 2023; 30:103779. [PMID: 37663397 PMCID: PMC10470205 DOI: 10.1016/j.sjbs.2023.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/10/2023] [Indexed: 09/05/2023] Open
Abstract
Cerebrovascular disease is a threat to people with diabetes and hypertension. Diabetes can damage the brain by stimulating the renin-angiotensin system (RAS), leading to neurological deficits and brain strokes. Diabetes-induced components of the RAS, including angiotensin-converting enzyme (ACE), angiotensin-II (Ang-II), and angiotensin type 1 receptor (AT1R), have been linked to various neurological disorders in the brain. In this study, we investigated how diabetes and high blood pressure affected the regulation of these major RAS components in the frontal cortex of the rat brain. We dissected, homogenized, and processed the brain cortex tissues of control, streptozotocin-induced diabetic, spontaneously hypertensive (SHR), and streptozotocin-induced SHR rats for biochemical and Western blot analyses. We found that systolic blood pressure was elevated in SHR rats, but there was no significant difference between SHR and diabetic-SHR rats. In contrast to SHR rats, the heartbeat of diabetic SHR rats was low. Western blot analysis showed that the frontal cortexes of the brain expressed angiotensinogen, AT1R, and MAS receptor. There were no significant differences in angiotensinogen levels across the rat groups. However, the AT1R level was increased in diabetic and hypertensive rats compared to controls, whereas the MAS receptor was downregulated (p < 0.05). These findings suggest that RAS overactivation caused by diabetes may have negative consequences for the brain's cortex, leading to neurodegeneration and cognitive impairment.
Collapse
Affiliation(s)
- Abeeb Oyesiji Abiodun
- Biochemistry Department, College of Science, King Saud University, 11451,
Riyadh, Saudi Arabia
| | - Dalia I AlDosari
- Biochemistry Department, College of Science, King Saud University, 11451,
Riyadh, Saudi Arabia
| | - Amani Alghamdi
- Biochemistry Department, College of Science, King Saud University, 11451,
Riyadh, Saudi Arabia
| | - Abdul Aziz Al-Amri
- Biochemistry Department, College of Science, King Saud University, 11451,
Riyadh, Saudi Arabia
| | - Sarfaraz Ahmad
- Departments of Surgery, Wake Forest University School of Medicine,
Winston-Salem, NC, USA
| | - Mohammad Shamsul Ola
- Biochemistry Department, College of Science, King Saud University, 11451,
Riyadh, Saudi Arabia
| |
Collapse
|
4
|
Rocha GS, Freire MAM, Paiva KM, Oliveira RF, Norrara B, Morais PLAG, Oliveira LC, Engelberth RCGJ, Cavalcante JS, Cavalcanti JRLP. Effect of senescence on the tyrosine hydroxylase and S100B immunoreactivity in the nigrostriatal pathway of the rat. J Chem Neuroanat 2022; 124:102136. [PMID: 35809809 DOI: 10.1016/j.jchemneu.2022.102136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Senescence is a natural and progressive physiological event that leads to a series of morphophysiological alterations in the organism. The brain is the most vulnerable organ to both structural and functional changes during this process. Dopamine is a key neurotransmitter for the proper functioning of the brain, directly involved in circuitries related with emotions, learning, motivation and reward. One of the main dopamine- producing nuclei is the substantia nigra pars compacta (SNpc), which establish connections with the striatum forming the so-called nigrostriatal pathway. S100B is a calcium binding protein mainly expressed by astrocytes, involved in both intracellular and extracellular processes, and whose expression is increased following injury in the nervous tissue, being a useful marker in altered status of central nervous system. The present study aimed to analyze the impact of senescence on the cells immunoreactive for tyrosine hydroxylase (TH) and S100B along the nigrostriatal pathway of the rat. Our results show an decreased expression of S100B+ cells in SNpc. In addition, there was a significant decrease in TH immunoreactivity in both projection fibers and TH+ cell bodies. In the striatum, a decrease in TH immunoreactivity was also observed, as well as an enlargement of the white matter bundles. Our findings point out that senescence is related to the anatomical and neurochemical changes observed throughout the nigrostriatal pathway.
Collapse
Affiliation(s)
- Gabriel S Rocha
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Marco Aurelio M Freire
- Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Karina M Paiva
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Rodrigo F Oliveira
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Bianca Norrara
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Paulo Leonardo A G Morais
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Lucidio C Oliveira
- Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | | | | | - José Rodolfo L P Cavalcanti
- Graduate Program in Biochemistry and Molecular Biology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Graduate Program in Health and Society, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil; Laboratory of Experimental Neurology, University of the State of Rio Grande do Norte (UERN), Mossoró, RN, Brazil.
| |
Collapse
|
5
|
Qabazard B, Yousif M, Mousa A, Phillips OA. GYY4137 attenuates functional impairment of corpus cavernosum and reduces fibrosis in rats with STZ-induced diabetes by inhibiting the TGF-β1/Smad/CTGF pathway. Biomed Pharmacother 2021; 138:111486. [PMID: 34311523 DOI: 10.1016/j.biopha.2021.111486] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/08/2021] [Accepted: 03/09/2021] [Indexed: 10/21/2022] Open
Abstract
Erectile dysfunction (ED) is a common diabetic complication. Recent evidence has illuminated the role of hydrogen sulfide (H2S) as a dynamic mediator of the erection process. H2S is a potent endogenous relaxant gas. It has been shown to relax human and animal penile tissue in vitro and induce erection in animals in vivo. The reported penile expression of H2S-synthesizing enzymes also supports the potential role of the endogenous L-cysteine/H2S pathway in penile homeostasis. Several pathological changes take place in the diabetic penile tissue, including inflammation, oxidative stress, neuropathy and fibrosis of the corpus cavernosum (CC), the major erectile structure of the penis. The present study is experimental and has been performed in the diabetic rat model. The study will investigate the role of H2S as a potential protective mediator against diabetes-induced structural and functional alterations in the CC by examining if it: (1) reduces corporal contraction and/or enhances corporal relaxation following pharmacological stimulation, (2) attenuates fibromuscular changes in diabetic CC, and (3) whether there is a link with H2S plasma/urine level and CC tissue generation, as well as studying the expression of some proteins in the transforming growth factor (TGF)-β1-associated pathway. The major findings of the study reveal that- compared to the nondiabetic controls - the diabetic animals CC showed: (1) augmented contraction and attenuated relaxation in response to phenylephrine and carbachol, respectively, (2) marked fibromuscular degeneration with a significantly lower smooth muscle/collagen ratio and upregulation of TGF-β-1/Smad/CTGF fibrosis signaling pathway, (3) reduced H2S plasma and urinary levels and cavernosal tissue generation. Chronic GYY4137 treatment prevented most of these pathological changes in diabetic CC, thus may be considered a potential new strategy for the prevention and/or treatment of diabetes-induced ED.
Collapse
Affiliation(s)
- Bedoor Qabazard
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Kuwait.
| | - Mariam Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, Kuwait
| | - Alyaa Mousa
- Department of Anatomy, Faculty of Medicine, Kuwait University, Kuwait
| | | |
Collapse
|
6
|
Rahmati M, Taherabadi SJ. The effects of exercise training on Kinesin and GAP-43 expression in skeletal muscle fibers of STZ-induced diabetic rats. Sci Rep 2021; 11:9535. [PMID: 33953268 PMCID: PMC8099856 DOI: 10.1038/s41598-021-89106-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
Kinesin-1 and Growth Associated Protein 43 (GAP-43) localization in muscle fiber are crucial for proper skeletal muscle hypertrophy. To evaluate this assumption, we investigated the beneficial effects of endurance training on GAP-43 and Kinesin Family Member 5B (KIF5B) expression in gastrocnemius muscle of streptozotocin (STZ)-induced diabetic rats. Fifty-two male rats were randomly divided into four groups: healthy control (C), healthy trained (T), diabetic control (DC) and diabetic trained (DT). Diabetes was induced by a single intraperitoneal injection of STZ (45 mg/kg). The rats in DT and T groups were subjected to treadmill running for 5 days a week over 6 weeks. The results indicated that the GAP-43 and KIF5B protein levels in the DC group were significantly lower than those in the C group. Additionally, chronic treadmill running in diabetic rats was accompanied by significant increase of GAP-43 and KIF5B protein expression, compared to DC group. Furthermore, the endurance training in healthy rats was associated with a significant increase of GAP-43 and KIF5B protein levels. In addition, we found positive correlation between GAP-43 and KIF5B protein levels and myonuclear number per fiber and average gastrocnemius cross-sectional area (CSA). GAP43 and KIF5B protein levels were decreased in skeletal muscles of diabetic rats, and exercise training had beneficial effects and could restore their abnormal expression. Moreover, there is a strong relationship between muscle hypertrophy and GAP-43 and KIF5B protein levels.
Collapse
Affiliation(s)
- Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran.
| | - Seyed Jalal Taherabadi
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
| |
Collapse
|
7
|
Lund B, Stone R, Levy A, Lee S, Amundson E, Kashani N, Rodgers K, Kelland E. Reduced disease severity following therapeutic treatment with angiotensin 1–7 in a mouse model of multiple sclerosis. Neurobiol Dis 2019; 127:87-100. [DOI: 10.1016/j.nbd.2019.02.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/20/2019] [Indexed: 12/19/2022] Open
|
8
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 769] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
9
|
Jiang T, Zhang YD, Zhou JS, Zhu XC, Tian YY, Zhao HD, Lu H, Gao Q, Tan L, Yu JT. Angiotensin-(1-7) is Reduced and Inversely Correlates with Tau Hyperphosphorylation in Animal Models of Alzheimer’s Disease. Mol Neurobiol 2015; 53:2489-97. [DOI: 10.1007/s12035-015-9260-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 05/28/2015] [Indexed: 12/29/2022]
|
10
|
Jiang T, Yu JT, Zhu XC, Zhang QQ, Tan MS, Cao L, Wang HF, Lu J, Gao Q, Zhang YD, Tan L. Angiotensin-(1-7) induces cerebral ischaemic tolerance by promoting brain angiogenesis in a Mas/eNOS-dependent pathway. Br J Pharmacol 2014; 171:4222-32. [PMID: 24824997 DOI: 10.1111/bph.12770] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 04/18/2014] [Accepted: 04/30/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE As a newer component of the renin-angiotensin system, angiotensin-(1-7) [Ang-(1-7) ] has been shown to facilitate angiogenesis and protect against ischaemic damage in peripheral tissues. However, the role of Ang-(1-7) in brain angiogenesis remains unclear. The aim of this study was to investigate whether Ang-(1-7) could promote angiogenesis in brain, thus inducing tolerance against focal cerebral ischaemia. EXPERIMENTAL APPROACH Male Sprague-Dawley rats were i.c.v. infused with Ang-(1-7), A-779 (a Mas receptor antagonist), L-NIO, a specific endothelial NOS (eNOS) inhibitor, endostatin (an anti-angiogenic compound) or vehicle, alone or simultaneously, for 1-4 weeks. Capillary density, endothelial cell proliferation and key components of eNOS pathway in the brain were evaluated. Afterwards, rats were subjected to permanent middle cerebral artery occlusion (pMCAO), and regional cerebral blood flow (rCBF), infarct volume and neurological deficits were measured 24 h later. KEY RESULTS Infusion of Ang-(1-7) for 4 weeks significantly increased brain capillary density via promoting endothelial cell proliferation, which was accompanied by eNOS activation and up-regulation of NO and VEGF in brain. These effects were abolished by A-779 or L-NIO. More importantly, Ang-(1-7) improved rCBF and decreased infarct volume and neurological deficits after pMCAO, which could be reversed by A-779, L-NIO or endostatin. CONCLUSIONS AND IMPLICATIONS This is the first evidence that Ang-(1-7) promotes brain angiogenesis via a Mas/eNOS-dependent pathway, which enhances tolerance against subsequent cerebral ischaemia. These findings highlight brain Ang-(1-7)/Mas signalling as a potential target in stroke prevention.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Yousif MHM, Makki B, El-Hashim AZ, Akhtar S, Benter IF. Chronic treatment with Ang-(1-7) reverses abnormal reactivity in the corpus cavernosum and normalizes diabetes-induced changes in the protein levels of ACE, ACE2, ROCK1, ROCK2 and omega-hydroxylase in a rat model of type 1 diabetes. J Diabetes Res 2014; 2014:142154. [PMID: 25309930 PMCID: PMC4182022 DOI: 10.1155/2014/142154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-(1-7) [Ang-(1-7)] may have beneficial effects in diabetes mellitus-induced erectile dysfunction (DMIED) but its molecular actions in the diabetic corpus cavernosum (CC) are not known. We characterized the effects of diabetes and/or chronic in vivo administration of Ang-(1-7) on vascular reactivity in the rat corpus cavernosum (CC) and on protein expression levels of potential downstream effectors of the renin-angiotensin-aldosterone system (RAAS) such as angiotensin-converting enzyme (ACE), ACE2, Rho kinases 1 and 2 (ROCK1 and ROCK2), and omega-hydroxylase, the cytochrome-P450 enzyme that metabolizes arachidonic acid to form the vasoconstrictor, 20-hydroxyeicosatetraenoic acid. Streptozotocin-treated rats were chronicically administered Ang-(1-7) with or without A779, a Mas receptor antagonist, during weeks 4 to 6 of diabetes. Ang-(1-7) reversed diabetes-induced abnormal reactivity to vasoactive agents (endothelin-1, phenylepherine, and carbachol) in the CC without correcting hyperglycemia. Six weeks of diabetes led to elevated ACE, ROCK1, ROCK 2, and omega-hydroxylase and a concomitant decrease in ACE2 protein expression levels that were normalized by Ang-(1-7) treatment but not upon coadministration of A779. These data are supportive of the notion that the beneficial effects of Ang-(1-7) in DMIED involve counterregulation of diabetes-induced changes in ACE, ACE2, Rho kinases, and omega-hydroxylase proteins in the diabetic CC via a Mas receptor-dependent mechanism.
Collapse
Affiliation(s)
- Mariam H. M. Yousif
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Batoul Makki
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Ahmed Z. El-Hashim
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| | - Saghir Akhtar
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
- *Saghir Akhtar:
| | - Ibrahim F. Benter
- Department of Pharmacology and Toxicology, Faculty of Medicine, Kuwait University, P.O. Box 24923, 13110 Safat, Kuwait
| |
Collapse
|
12
|
Jiang T, Gao L, Zhu XC, Yu JT, Shi JQ, Tan MS, Lu J, Tan L, Zhang YD. Angiotensin-(1-7) inhibits autophagy in the brain of spontaneously hypertensive rats. Pharmacol Res 2013; 71:61-8. [PMID: 23499735 DOI: 10.1016/j.phrs.2013.03.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/05/2013] [Accepted: 03/06/2013] [Indexed: 12/19/2022]
Abstract
Autophagy is an important cellular process that mediates lysosomal degradation of damaged organelles, which is activated in response to a variety of stress-related diseases, including hypertension. The basal level of autophagy plays an important role in the maintenance of cellular homeostasis, whereas excessive autophagic activity leads to cell death and is considered as a contributing factor to several disorders. Recent works have demonstrated that Angiotensin-(1-7) [Ang-(1-7)] exerted its neuroprotective effects by modulating classic components of renin-angiotensin system associated with reducing oxidative stress and apoptosis in brains of spontaneously hypertensive rats (SHRs). However, the effect of Ang-(1-7) on autophagic activity in brain of hypertensive individual remains unclear. In this study, Wistar-Kyoto rats received intracerebroventricular (I.C.V.) infusion of artificial cerebrospinal fluid (aCSF) while SHRs received I.C.V. infusion of aCSF, Ang-(1-7), Mas receptor antagonist A-779, or angiotensin II type 2 receptor antagonist PD123319 for 4 weeks. Brain tissues were collected and analyzed by western blotting analysis, immunofluorescence assay, and transmission electron microscopic examination. Our study showed that infusion of Ang-(1-7) for 4 weeks inhibited the increase of microtubule-associated protein 1 light chain 3 (LC3)-II and Beclin-1 levels, as well as the autophagosome formation in SHR brain. Meanwhile, the reduction of p62 expression in SHR brain was also reversed by Ang-(1-7). Of note, the anti-autophagic effects of Ang-(1-7) were independent of blood pressure reduction and can be inhibited by A-779 and PD123319. These findings suggest that treatment with Ang-(1-7) may be useful to prevent hypertension-induced excessive autophagic activation in brain.
Collapse
Affiliation(s)
- Teng Jiang
- Department of Neurology, Qingdao Municipal Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | |
Collapse
|