1
|
Hammad ASA, Sayed-Ahmed MM, Abdel Hafez SMN, Ibrahim ARN, Khalifa MMA, El-Daly M. Trimetazidine alleviates paclitaxel-induced peripheral neuropathy through modulation of TLR4/p38/NFκB and klotho protein expression. Chem Biol Interact 2023; 376:110446. [PMID: 36898573 DOI: 10.1016/j.cbi.2023.110446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Chemotherapy-induced peripheral neuropathy is a common adverse effect associated with a number of chemotherapeutic agents including paclitaxel (PTX) which is commonly used in a wide range of solid tumors. Development of PTX-induced peripheral neuropathy (PIPN) during cancer treatment requires dose reduction which limits its clinical benefits. This study is conducted to investigate the role of toll like receptor-4 (TLR4) and p38 signaling and Klotho protein expression in PIPN and the role of Trimetazidine (TMZ) in this pathway. Sixty-four male Swiss albino mice were divided into 4 groups (n = 16); Group (1) injected intraperitoneally (IP) with ethanol/tween 80/saline for 8 successive days. Group (2) received TMZ (5 mg/kg, IP, day) for 8 successive days. Group (3) treated with 4 doses of PTX (4.5 mg/kg, IP) every other day over a period of 8 days. Group (4) received a combination of TMZ as group 2 and PTX as group 3. The Effect of TMZ on the antitumor activity of PTX was studied in another set of mice-bearing Solid Ehrlich Carcinoma (SEC) that was similarly divided as the above-mentioned set. TMZ mitigated tactile allodynia, thermal hypoalgesia, numbness and fine motor dyscoordination associated with PTX in Swiss mice. The results of the current study show that the neuroprotective effect of TMZ can be attributed to inhibition of TLR4/p38 signaling which also includes a reduction in matrix metalloproteinase-9 (MMP9) protein levels as well as the proinflammatory interleukin-1β (IL-1β) and preserving the levels of the anti-inflammatory IL-10. Moreover, the current study is the first to demonstrate that PTX reduces the neuronal levels of klotho protein and showed its modulation via cotreatment with TMZ. In addition, this study showed that TMZ neither alter the growth of SEC nor the antitumor activity of PTX. In conclusion, we suggest that (1) Inhibition of Klotho protein and upregulation of TLR4/p38 signals in nerve tissues may contribute to PIPN. (2) TMZ attenuates PIPN by modulating TLR4/p38 and Klotho protein expression in without interfering with its antitumor activity.
Collapse
Affiliation(s)
- Asmaa S A Hammad
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt.
| | - Mohamed M Sayed-Ahmed
- Pharmacology and Experimental Oncology Unit, National Cancer Institute, Cairo University, Cairo, 11796, Egypt
| | - Sara M N Abdel Hafez
- Department of Histology and Cell Biology, Faculty of Medicine, Minia University, Minia, 61511, Egypt
| | - Ahmed R N Ibrahim
- Clinical Pharmacy Department, College of Pharmacy, King Khalid University, Abha, 61441, Saudi Arabia; Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mohamed M A Khalifa
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| | - Mahmoud El-Daly
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Minia University, Minia, 61511, Egypt
| |
Collapse
|
2
|
Hoshino Y, Okuno T, Saigusa D, Kano K, Yamamoto S, Shindou H, Aoki J, Uchida K, Yokomizo T, Ito N. Lysophosphatidic acid receptor 1/3 antagonist inhibits the activation of satellite glial cells and reduces acute nociceptive responses. FASEB J 2022; 36:e22236. [PMID: 35218596 DOI: 10.1096/fj.202101678r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023]
Abstract
Lysophosphatidic acid (LPA) exerts various biological activities through six characterized G protein-coupled receptors (LPA1-6 ). While LPA-LPA1 signaling contributes toward the demyelination and retraction of C-fiber and induces neuropathic pain, the effects of LPA-LPA1 signaling on acute nociceptive pain is uncertain. This study investigated the role of LPA-LPA1 signaling in acute nociceptive pain using the formalin test. The pharmacological inhibition of the LPA-LPA1 axis significantly attenuated formalin-induced nociceptive behavior. The LPA1 mRNA was expressed in satellite glial cells (SGCs) in dorsal root ganglion (DRG) and was particularly abundant in SGCs surrounding large DRG neurons, which express neurofilament 200. Treatment with LPA1/3 receptor (LPA1/3 ) antagonist inhibited the upregulation of glial markers and inflammatory cytokines in DRG following formalin injection. The LPA1/3 antagonist also attenuated phosphorylation of extracellular signal-regulated kinase, especially in SGCs and cyclic AMP response element-binding protein in the dorsal horn following formalin injection. LPA amounts after formalin injection to the footpad were quantified by liquid chromatography/tandem mass spectrometry, and LPA levels were found to be increased in the innervated DRGs. Our results indicate that LPA produced in the innervated DRGs promotes the activation of SGCs through LPA1 , increases the sensitivity of primary neurons, and modulates pain behavior. These results facilitate our understanding of the pathology of acute nociceptive pain and demonstrate the possibility of the LPA1 on SGCs as a novel target for acute pain control.
Collapse
Affiliation(s)
- Yoko Hoshino
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Toshiaki Okuno
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Daisuke Saigusa
- Laboratory of Biomedical and Analytical Sciences, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan.,Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
| | - Kuniyuki Kano
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Shota Yamamoto
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan
| | - Hideo Shindou
- Department of Lipid Signaling, National Center for Global Health and Medicine, Tokyo, Japan.,Department of Lipid Medical Science, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Junken Aoki
- Department of Health Chemistry, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Kanji Uchida
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuko Ito
- Department of Anesthesiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Birgbauer E. Lysophosphatidic Acid Signalling in Nervous System Development and Function. Neuromolecular Med 2021; 23:68-85. [PMID: 33151452 PMCID: PMC11420905 DOI: 10.1007/s12017-020-08630-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/30/2020] [Indexed: 02/06/2023]
Abstract
One class of molecules that are now coming to be recognized as essential for our understanding of the nervous system are the lysophospholipids. One of the major signaling lysophospholipids is lysophosphatidic acid, also known as LPA. LPA activates a variety of G protein-coupled receptors (GPCRs) leading to a multitude of physiological responses. In this review, I describe our current understanding of the role of LPA and LPA receptor signaling in the development and function of the nervous system, especially the central nervous system (CNS). In addition, I highlight how aberrant LPA receptor signaling may underlie neuropathological conditions, with important clinical application.
Collapse
Affiliation(s)
- Eric Birgbauer
- Department of Biology, Winthrop University, Rock Hill, SC, USA.
| |
Collapse
|
4
|
Geraldo LHM, Spohr TCLDS, Amaral RFD, Fonseca ACCD, Garcia C, Mendes FDA, Freitas C, dosSantos MF, Lima FRS. Role of lysophosphatidic acid and its receptors in health and disease: novel therapeutic strategies. Signal Transduct Target Ther 2021; 6:45. [PMID: 33526777 PMCID: PMC7851145 DOI: 10.1038/s41392-020-00367-5] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/28/2020] [Accepted: 09/30/2020] [Indexed: 12/12/2022] Open
Abstract
Lysophosphatidic acid (LPA) is an abundant bioactive phospholipid, with multiple functions both in development and in pathological conditions. Here, we review the literature about the differential signaling of LPA through its specific receptors, which makes this lipid a versatile signaling molecule. This differential signaling is important for understanding how this molecule can have such diverse effects during central nervous system development and angiogenesis; and also, how it can act as a powerful mediator of pathological conditions, such as neuropathic pain, neurodegenerative diseases, and cancer progression. Ultimately, we review the preclinical and clinical uses of Autotaxin, LPA, and its receptors as therapeutic targets, approaching the most recent data of promising molecules modulating both LPA production and signaling. This review aims to summarize the most update knowledge about the mechanisms of LPA production and signaling in order to understand its biological functions in the central nervous system both in health and disease.
Collapse
Affiliation(s)
- Luiz Henrique Medeiros Geraldo
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Université de Paris, PARCC, INSERM, F-75015, Paris, France
| | | | | | | | - Celina Garcia
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catarina Freitas
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos Fabio dosSantos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Flavia Regina Souza Lima
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
5
|
Pathogenic mechanisms of lipid mediator lysophosphatidic acid in chronic pain. Prog Lipid Res 2020; 81:101079. [PMID: 33259854 DOI: 10.1016/j.plipres.2020.101079] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/22/2020] [Accepted: 11/23/2020] [Indexed: 02/07/2023]
Abstract
A number of membrane lipid-derived mediators play pivotal roles in the initiation, maintenance, and regulation of various types of acute and chronic pain. Acute pain, comprising nociceptive and inflammatory pain warns us about the presence of damage or harmful stimuli. However, it can be efficiently reversed by opioid analgesics and anti-inflammatory drugs. Prostaglandin E2 and I2, the representative lipid mediators, are well-known causes of acute pain. However, some lipid mediators such as lipoxins, resolvins or endocannabinoids suppress acute pain. Various types of peripheral and central neuropathic pain (NeuP) as well as fibromyalgia (FM) are representatives of chronic pain and refractory owing to abnormal pain processing distinct from acute pain. Accumulating evidence demonstrated that lipid mediators represented by lysophosphatidic acid (LPA) are involved in the initiation and maintenance of both NeuP and FM in experimental animal models. The LPAR1-mediated peripheral mechanisms including dorsal root demyelination, Cavα2δ1 expression in dorsal root ganglion, and LPAR3-mediated amplification of central LPA production via glial cells are involved in the series of molecular mechanisms underlying NeuP. This review also discusses the involvement of lipid mediators in emerging research directives, including itch-sensing, sexual dimorphism, and the peripheral immune system.
Collapse
|
6
|
Wang YH, Li Y, Wang JN, Zhao QX, Jin J, Wen S, Wang SC, Sun T. Maresin 1 Attenuates Radicular Pain Through the Inhibition of NLRP3 Inflammasome-Induced Pyroptosis via NF-κB Signaling. Front Neurosci 2020; 14:831. [PMID: 32982664 PMCID: PMC7479972 DOI: 10.3389/fnins.2020.00831] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 07/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background The exposure of the nucleus pulposus (NP) causes an immune and inflammatory response, which is intrinsically linked to the pathogenesis of radicular pain. As a newly discovered pro-resolving lipid mediator, maresin 1 (MaR1) could exert powerful inflammatory resolution, neuroprotection, and analgesic activities. In the present research, the analgesic effect of MaR1 was observed. Then, the potential mechanism by which MaR1 attenuated radicular pain was also analyzed in a rat model. Methods Intrathecal administration of MaR1 (10 or 100 ng) was successively performed in a rat with non-compressive lumbar disk herniation for three postoperative days. Mechanical and thermal thresholds were determined to assess pain-related behavior from days 1 to 7 (n = 8/group). On day 7, the tissues of spinal dorsal horns from different groups were gathered to evaluate expression levels of inflammatory cytokines (IL-1β, IL-18, and TNF-α), the NLRP3 inflammasome and pyroptosis indicators (GSDMD, ASC, NLRP3, and Caspase-1), together with NF-κB/p65 activation (n = 6/group). TUNEL and PI staining were performed to further examine the process of pyroptosis. Results After intrathecal administration in the rat model, MaR1 exhibited potent analgesic effect dose-dependently. MaR1 significantly prompted the resolution of the increased inflammatory cytokine levels, reversed the up-regulated expression of the inflammasome and pyroptosis indicators, and reduced the cell death and the positive activation of NF-κB/p65 resulting from the NP application on the L5 dorsal root ganglion. Conclusion This study indicated that the activation of NLRP3 inflammasome and pyroptosis played a significant role in the inflammatory reaction of radicular pain. Also, MaR1 could effectively down-regulate the inflammatory response and attenuate pain by inhibiting NLRP3 inflammasome-induced pyroptosis via NF-κB signaling.
Collapse
Affiliation(s)
- Yi-Hao Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Anesthesiology, Qingdao Municipal Hospital, Qingdao, China
| | - Yan Li
- Department of Obstetrics and Gynecology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jun-Nan Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qing-Xiang Zhao
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jin Jin
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shuang Wen
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Si-Cong Wang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Tao Sun
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Involvement of lysophosphatidic acid-induced astrocyte activation underlying the maintenance of partial sciatic nerve injury-induced neuropathic pain. Pain 2019; 159:2170-2178. [PMID: 29939962 DOI: 10.1097/j.pain.0000000000001316] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We have previously demonstrated that lysophosphatidic acid (LPA) plays key roles in the initial mechanisms for neuropathic pain (NeuP) development. Here, we examined whether LPA receptor mechanisms and LPA production are related to the glial activation at a late stage after partial sciatic nerve ligation (pSNL) by use of microglial inhibitor, Mac1-saporin or astrocyte inhibitor, and L-α-aminoadipate (L-AA). Although single intrathecal injection of LPA1/3 antagonist, Ki-16425 did not affect the pain threshold at day 7 after the spinal cord injury, repeated treatments of each compound gradually reversed the basal pain threshold to the control level. The intrathecal administration of a microglia inhibitor, Mac-1-saporin reversed the late hyperalgesia and LPA production at day 14 after the pSNL, whereas L-AA inhibited the hyperalgesia, but had no effect on LPA production. The involvement of LPA receptors in astrocyte activation in vivo was evidenced by the findings that Ki-16425 treatments abolished the upregulation of CXCL1 in activated astrocytes in the spinal dorsal horn of mice at day 14 after the pSNL, and that Ki-16425 reversed the LPA-induced upregulation of several chemokine gene expressions in primary cultured astrocytes. Finally, we found that significant hyperalgesia was observed with intrathecal administration of primary cultured astrocytes, which had been stimulated by LPA in a Ki-16425-reversible manner. All these findings suggest that LPA production and LPA1/3 receptor activation through differential glial mechanisms play key roles in the maintenance as well as initiation mechanisms in NeuP.
Collapse
|
8
|
McDonald WS, Jones EE, Wojciak JM, Drake RR, Sabbadini RA, Harris NG. Matrix-Assisted Laser Desorption Ionization Mapping of Lysophosphatidic Acid Changes after Traumatic Brain Injury and the Relationship to Cellular Pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2018; 188:1779-1793. [PMID: 30037420 PMCID: PMC6099387 DOI: 10.1016/j.ajpath.2018.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 05/07/2018] [Accepted: 05/16/2018] [Indexed: 12/29/2022]
Abstract
Lysophosphatidic acid (LPA) levels increase in the cerebrospinal fluid and blood within 24 hours after traumatic brain injury (TBI), indicating it may be a biomarker for subsequent cellular pathology. However, no data exist that document this association after TBI. We, therefore, acquired matrix-assisted laser desorption ionization imaging mass spectrometry data of LPA, major LPA metabolites, and hemoglobin from adult rat brains at 1 and 3 hours after controlled cortical impact injury. Data were semiquantitatively assessed by signal intensity analysis normalized to naïve rat brains acquired concurrently. Gray and white matter pathology was assessed on adjacent sections using immunohistochemistry for cell death, axonal injury, and intracellular LPA, to determine the spatiotemporal patterning of LPA corresponding to pathology. The results revealed significant increases in LPA and LPA precursors at 1 hour after injury and robust enhancement in LPA diffusively throughout the brain at 3 hours after injury. Voxel-wise analysis of LPA by matrix-assisted laser desorption ionization and β-amyloid precursor protein by immunohistochemistry in adjacent sections showed significant association, raising the possibility that LPA is linked to secondary axonal injury. Total LPA and metabolites were also present in remotely injured areas, including cerebellum and brain stem, and in particular thalamus, where intracellular LPA is associated with cell death. LPA may be a useful biomarker of cellular pathology after TBI.
Collapse
Affiliation(s)
- Whitney S McDonald
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Elizabeth E Jones
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Richard R Drake
- Medical University of South Carolina Proteomics Center, Charleston, South Carolina
| | | | - Neil G Harris
- UCLA Brain Injury Research Center, Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California.
| |
Collapse
|
9
|
Nervous system delivery of antilysophosphatidic acid antibody by nasal application attenuates mechanical allodynia after traumatic brain injury in rats. Pain 2018; 158:2181-2188. [PMID: 29028747 DOI: 10.1097/j.pain.0000000000001019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Lysophosphatidic acid (LPA) is a bioactive lipid that impacts neurological outcomes after neurotrauma by inhibiting neuroregeneration, promoting inflammation, and contributing to behavioral deficits. Blocking LPA signaling with a novel anti-LPA monoclonal antibody (mAb) is neuroprotective after traumatic brain injury (TBI) if given to injured animals whose blood-brain barrier (BBB) has been compromised. It is hypothesized that the anti-LPA mAb could improve chronic pain initiated by TBI. However, poor brain penetration after systemic application of the antibody makes access to the central nervous system (CNS) problematic in situations where the BBB is intact. Our experiments investigated whether intranasal delivery of the anti-LPA mAb could bypass the BBB, allowing for direct entry of the antibody to certain areas of the CNS. When the humanized anti-LPA mAb, LT3114, was intranasally applied to injured rats within 30 minutes after mild TBI using the central lateral percussion model, enzyme-linked immunospecific assay and immunohistochemistry demonstrated antibody uptake to several areas in the CNS, including the area of cortical injury, the corpus callosum, cerebellum, and the subventricular region. Compared with control rats that received LT3114 but no TBI, TBI rats demonstrated significantly higher concentrations of intranasally administered LT3114 antibody in some tissues. In behavioral studies, a significant attenuation of mechanical allodynia after TBI was observed in the anti-LPA treatment group (P = 0.0079), when compared with vehicle controls within 14 days after TBI. These results suggest that intranasal application of the anti-LPA antibody directly accesses CNS sites involved in TBI-related pain and that this access attenuates pain sequelae to the neurotrauma.
Collapse
|
10
|
Yi Z, Xie L, Zhou C, Yuan H, Ouyang S, Fang Z, Zhao S, Jia T, Zou L, Wang S, Xue Y, Wu B, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. P2Y 12 receptor upregulation in satellite glial cells is involved in neuropathic pain induced by HIV glycoprotein 120 and 2',3'-dideoxycytidine. Purinergic Signal 2017; 14:47-58. [PMID: 29159762 DOI: 10.1007/s11302-017-9594-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Accepted: 11/02/2017] [Indexed: 02/06/2023] Open
Abstract
The direct neurotoxicity of HIV and neurotoxicity of combination antiretroviral therapy medications both contribute to the development of neuropathic pain. Activation of satellite glial cells (SGCs) in the dorsal root ganglia (DRG) plays a crucial role in mechanical and thermal hyperalgesia. The P2Y12 receptor expressed in SGCs of the DRG is involved in pain transmission. In this study, we explored the role of the P2Y12 receptor in neuropathic pain induced by HIV envelope glycoprotein 120 (gp120) combined with ddC (2',3'-dideoxycytidine). A rat model of gp120+ddC-induced neuropathic pain was used. Peripheral nerve exposure to HIV-gp120+ddC increased mechanical and thermal hyperalgesia in gp120+ddC-treated model rats. The gp120+ddC treatment increased expression of P2Y12 receptor mRNA and protein in DRG SGCs. In primary cultured DRG SGCs treated with gp120+ddC, the levels of [Ca2+]i activated by the P2Y12 receptor agonist 2-(Methylthio) adenosine 5'-diphosphate trisodium salt (2-MeSADP) were significantly increased. P2Y12 receptor shRNA treatment inhibited 2-MeSADP-induced [Ca2+]i in primary cultured DRG SGCs treated with gp120+ddC. Intrathecal treatment with a shRNA against P2Y12 receptor in DRG SGCs reduced the release of pro-inflammatory cytokines, decreased phosphorylation of p38 MAPK in the DRG of gp120+ddC-treated rats. Thus, downregulating the P2Y12 receptor relieved mechanical and thermal hyperalgesia in gp120+ddC-treated rats.
Collapse
Affiliation(s)
- Zhihua Yi
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
- Nursing College, Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lihui Xie
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Congfa Zhou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Huilong Yuan
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuai Ouyang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Zhi Fang
- Undergraduate student of Clinic Medicine School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shanhong Zhao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Tianyu Jia
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Lifang Zou
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shouyu Wang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Xue
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Bing Wu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Yun Gao
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Guilin Li
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shuangmei Liu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Hong Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Changshui Xu
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Chunping Zhang
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China
| | - Shangdong Liang
- School of life Sciences of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
- Department of Physiology, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, People's Republic of China.
| |
Collapse
|
11
|
Silencing of FKBP51 alleviates the mechanical pain threshold, inhibits DRG inflammatory factors and pain mediators through the NF-kappaB signaling pathway. Gene 2017. [DOI: 10.1016/j.gene.2017.06.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
12
|
Silencing of IRF3 alleviates chronic neuropathic pain following chronic constriction injury. Biomed Pharmacother 2017; 88:403-408. [DOI: 10.1016/j.biopha.2017.01.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 01/01/2023] Open
|
13
|
Lysophosphatidic acid signaling is the definitive mechanism underlying neuropathic pain. Pain 2017; 158 Suppl 1:S55-S65. [DOI: 10.1097/j.pain.0000000000000813] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Resolvin D1 Inhibits Mechanical Hypersensitivity in Sciatica by Modulating the Expression of Nuclear Factor-κB, Phospho-extracellular Signal–regulated Kinase, and Pro- and Antiinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion. Anesthesiology 2016; 124:934-44. [PMID: 26808633 DOI: 10.1097/aln.0000000000001010] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Abstract
Background
Accumulating evidence indicates that spinal inflammatory and immune responses play an important role in the process of radicular pain caused by intervertebral disk herniation. Resolvin D1 (RvD1) has been shown to have potent antiinflammatory and antinociceptive effects. The current study was undertaken to investigate the analgesic effect of RvD1 and its underlying mechanism in rat models of noncompressive lumbar disk herniation.
Methods
Rat models of noncompressive lumber disk herniation were established, and mechanical thresholds were evaluated using the von Frey test during an observation period of 21 days (n = 8/group). Intrathecal injection of vehicle or RvD1 (10 or 100 ng) was performed for three successive postoperative days. On day 7, the ipsilateral spinal dorsal horns and L5 dorsal root ganglions (DRGs) were removed to assess the expressions of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-10, and transforming growth factor-β1 (TGF-β1) and the activation of nuclear factor-κB (NF-κB)/p65 and phospho-extracellular signal–regulated kinase (p-ERK) signaling (n = 30/group).
Results
The application of nucleus pulposus to L5 DRG induced prolonged mechanical allodynia, inhibited the production of IL-10 and TGF-β1, and up-regulated the expression of TNF-α, IL-1β, NF-κB/p65, and p-ERK in the spinal dorsal horns and DRGs. Intrathecal injection of RvD1 showed a potent analgesic effect, inhibited the up-regulation of TNF-α and IL-1β, increased the release of IL-10 and TGF-β1, and attenuated the expression of NF-κB/p65 and p-ERK in a dose-dependent manner.
Conclusions
The current study showed that RvD1 might alleviate neuropathic pain via regulating inflammatory mediators and NF-κB/p65 and p-ERK pathways. Its antiinflammatory and proresolution properties may offer novel therapeutic approaches for the management of neuropathic pain.
Collapse
|
15
|
Uchida H, Nagai J, Ueda H. Lysophosphatidic acid and its receptors LPA1 and LPA3 mediate paclitaxel-induced neuropathic pain in mice. Mol Pain 2014; 10:71. [PMID: 25411045 PMCID: PMC4246549 DOI: 10.1186/1744-8069-10-71] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background Paclitaxel, which is widely used for the treatment of solid tumors, causes neuropathic pain via poorly understood mechanisms. Previously, we have demonstrated that lysophosphatidic acid (LPA) and its receptors (LPA1 and LPA3) are required for the initiation of peripheral nerve injury-induced neuropathic pain. The present study aimed to clarify whether LPA and its receptors could mediate paclitaxel-induced neuropathic pain. Results Intraperitoneal administration of paclitaxel triggered a marked increase in production of LPA species (18:1-, 16:0-, and 18:0-LPA) in the spinal dorsal horn. Also, we found significant activations of spinal cytosolic phospholipase A2 and calcium-independent phospholipase A2 after the paclitaxel treatment. The paclitaxel-induced LPA production was completely abolished not only by intrathecal pretreatment with neurokinin 1 (NK1) or N-methyl-D-aspartate (NMDA) receptor antagonist, but also in LPA1 receptor-deficient (Lpar1−/−) and LPA3 receptor-deficient (Lpar3−/−) mice. In addition, the pharmacological blockade of NK1 or NMDA receptor prevented a reduction in the paw withdrawal threshold against mechanical stimulation after paclitaxel treatments. Importantly, the paclitaxel-induced mechanical allodynia was absent in Lpar1−/− and Lpar3−/− mice. Conclusions These results suggest that LPA1 and LPA3 receptors-mediated amplification of spinal LPA production is required for the development of paclitaxel-induced neuropathic pain.
Collapse
Affiliation(s)
| | | | - Hiroshi Ueda
- Department of Pharmacology and Therapeutic Innovation, Nagasaki University Graduate School of Biomedical Sciences, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan.
| |
Collapse
|
16
|
Morales-Lázaro SL, Rosenbaum T. A painful link between the TRPV1 channel and lysophosphatidic acid. Life Sci 2014; 125:15-24. [PMID: 25445434 DOI: 10.1016/j.lfs.2014.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/30/2014] [Accepted: 10/04/2014] [Indexed: 10/24/2022]
Abstract
The Transient Receptor Potential Vanilloid 1 (TRPV1) ion channel is expressed mainly by sensory neurons that detect noxious stimuli from the environment such as high temperatures and pungent compounds (such as allicin and capsaicin) and has been extensively linked to painful and inflammatory processes. This extraordinary protein also responds to endogenous stimuli among which we find molecules of a lipidic nature. We recently described that lysophosphatidic acid (LPA), a bioactive lysophospholipid linked to the generation and maintenance of pain, can directly activate TRPV1 and produce pain by binding to the channels' C-terminal region, specifically to residue K710. In an effort to further understand how activation of TRPV1 is achieved by this negatively-charged lipid, we used several synthetic and naturally-occurring lipids to determine the structural requirements that need to be met by these charged lipids in order to produce the activation of TRPV1. In this review, we detail the findings obtained by other research groups and our own on the field of TRPV1-regulation by negatively-charged lipids and discuss the possible therapeutic relevance of these findings on the basis of the role of TRPV1 in pathophysiological processes.
Collapse
Affiliation(s)
- Sara L Morales-Lázaro
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México
| | - Tamara Rosenbaum
- Departamento de Neurodesarrollo y Fisiología, División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México.
| |
Collapse
|