1
|
Kundu M, Das S, Dey A, Mandal M. Dual perspective on autophagy in glioma: Detangling the dichotomous mechanisms of signaling pathways for therapeutic insights. Biochim Biophys Acta Rev Cancer 2024; 1879:189168. [PMID: 39121913 DOI: 10.1016/j.bbcan.2024.189168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/25/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Autophagy is a normal physiological process that aids the recycling of cellular nutrients, assisting the cells to cope with stressed conditions. However, autophagy's effect on cancer, including glioma, is uncertain and involves complicated molecular mechanisms. Several contradictory reports indicate that autophagy may promote or suppress glioma growth and progression. Autophagy inhibitors potentiate the efficacy of chemotherapy or radiation therapy in glioma. Numerous compounds stimulate autophagy to cause glioma cell death. Autophagy is also involved in the therapeutic resistance of glioma. This review article aims to detangle the complicated molecular mechanism of autophagy to provide a better perception of the two-sided role of autophagy in glioma and its therapeutic implications. The protein and epigenetic modulators of the cytoprotective and cytotoxic role of autophagy are described in this article. Moreover, several signaling pathways are associated with autophagy and its effects on glioma. We have reviewed the molecular pathways and highlighted the signaling axis involved in cytoprotective and cytotoxic autophagy. Additionally, this article discusses the role of autophagy in therapeutic resistance, including glioma stem cell maintenance and tumor microenvironment regulation. It also summarizes several investigations on the anti-glioma effects of autophagy modulators to understand the associated mechanisms and provide insights regarding its therapeutic implications.
Collapse
Affiliation(s)
- Moumita Kundu
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Center for Multidisciplinary Research & Innovations, Brainware University, Barasat, India; Department of Pharmaceutical Technology, Brainware University, Barasat, India.
| | - Subhayan Das
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India; Department of Allied Health Sciences, Brainware University, Barasat, India
| | - Ankita Dey
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
2
|
Luján-Méndez F, Roldán-Padrón O, Castro-Ruíz JE, López-Martínez J, García-Gasca T. Capsaicinoids and Their Effects on Cancer: The "Double-Edged Sword" Postulate from the Molecular Scale. Cells 2023; 12:2573. [PMID: 37947651 PMCID: PMC10650825 DOI: 10.3390/cells12212573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
Capsaicinoids are a unique chemical species resulting from a particular biosynthesis pathway of hot chilies (Capsicum spp.) that gives rise to 22 analogous compounds, all of which are TRPV1 agonists and, therefore, responsible for the pungency of Capsicum fruits. In addition to their human consumption, numerous ethnopharmacological uses of chili have emerged throughout history. Today, more than 25 years of basic research accredit a multifaceted bioactivity mainly to capsaicin, highlighting its antitumor properties mediated by cytotoxicity and immunological adjuvancy against at least 74 varieties of cancer, while non-cancer cells tend to have greater tolerance. However, despite the progress regarding the understanding of its mechanisms of action, the benefit and safety of capsaicinoids' pharmacological use remain subjects of discussion, since CAP also promotes epithelial-mesenchymal transition, in an ambivalence that has been referred to as "the double-edge sword". Here, we update the comparative discussion of relevant reports about capsaicinoids' bioactivity in a plethora of experimental models of cancer in terms of selectivity, efficacy, and safety. Through an integration of the underlying mechanisms, as well as inherent aspects of cancer biology, we propose mechanistic models regarding the dichotomy of their effects. Finally, we discuss a selection of in vivo evidence concerning capsaicinoids' immunomodulatory properties against cancer.
Collapse
Affiliation(s)
- Francisco Luján-Méndez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Octavio Roldán-Padrón
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - J. Eduardo Castro-Ruíz
- Escuela de Odontología, Facultad de Medicina, Universidad Autónoma de Querétaro, Querétaro 76176, Querétaro, Mexico;
| | - Josué López-Martínez
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| | - Teresa García-Gasca
- Laboratorio de Biología Celular y Molecular, Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Av. De las Ciencias s/n, Juriquilla, Querétaro 76230, Querétaro, Mexico; (F.L.-M.); (O.R.-P.); (J.L.-M.)
| |
Collapse
|
3
|
Silva JL, Santos EA, Alvarez-Leite JI. Are We Ready to Recommend Capsaicin for Disorders Other Than Neuropathic Pain? Nutrients 2023; 15:4469. [PMID: 37892544 PMCID: PMC10609899 DOI: 10.3390/nu15204469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/15/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Capsaicin, a lipophilic, volatile compound, is responsible for the pungent properties of chili peppers. In recent years, a significant increase in investigations into its properties has allowed the production of new formulations and the development of tools with biotechnological, diagnostic, and potential therapeutic applications. Most of these studies show beneficial effects, improving antioxidant and anti-inflammatory status, inducing thermogenesis, and reducing white adipose tissue. Other mechanisms, including reducing food intake and improving intestinal dysbiosis, are also described. In this way, the possible clinical application of such compound is expanding every year. This opinion article aims to provide a synthesis of recent findings regarding the mechanisms by which capsaicin participates in the control of non-communicable diseases such as obesity, diabetes, and dyslipidemia.
Collapse
Affiliation(s)
| | | | - Jacqueline I. Alvarez-Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Belo Horizonte 30161-970, MG, Brazil; (J.L.S.); (E.A.S.)
| |
Collapse
|
4
|
Lopez-Ortiz C, Edwards M, Natarajan P, Pacheco-Valenciana A, Nimmakayala P, Adjeroh DA, Sirbu C, Reddy UK. Peppers in Diet: Genome-Wide Transcriptome and Metabolome Changes in Drosophila melanogaster. Int J Mol Sci 2022; 23:9924. [PMID: 36077322 PMCID: PMC9455967 DOI: 10.3390/ijms23179924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/24/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
The habanero pepper (Capsicum chinense) is an increasingly important spice and vegetable crop worldwide because of its high capsaicin content and pungent flavor. Diets supplemented with the phytochemicals found in habanero peppers might cause shifts in an organism's metabolism and gene expression. Thus, understanding how these interactions occur can reveal the potential health effects associated with such changes. We performed transcriptomic and metabolomic analyses of Drosophila melanogaster adult flies reared on a habanero pepper diet. We found 539 genes/59 metabolites that were differentially expressed/accumulated in flies fed a pepper versus control diet. Transcriptome results indicated that olfactory sensitivity and behavioral responses to the pepper diet were mediated by olfactory and nutrient-related genes including gustatory receptors (Gr63a, Gr66a, and Gr89a), odorant receptors (Or23a, Or59a, Or82a, and Orco), and odorant-binding proteins (Obp28a, Obp83a, Obp83b, Obp93a, and Obp99a). Metabolome analysis revealed that campesterol, sitosterol, and sucrose were highly upregulated and azelaic acid, ethyl phosphoric acid, and citric acid were the major metabolites downregulated in response to the habanero pepper diet. Further investigation by integration analysis between transcriptome and metabolome data at gene pathway levels revealed six unique enriched pathways, including phenylalanine metabolism; insect hormone biosynthesis; pyrimidine metabolism; glyoxylate, and dicarboxylate metabolism; glycine, serine, threonine metabolism; and glycerolipid metabolism. In view of the transcriptome and metabolome findings, our comprehensive analysis of the response to a pepper diet in Drosophila have implications for exploring the molecular mechanism of pepper consumption.
Collapse
Affiliation(s)
- Carlos Lopez-Ortiz
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Mary Edwards
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Purushothaman Natarajan
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Armando Pacheco-Valenciana
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Padma Nimmakayala
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| | - Donald A Adjeroh
- Lane Department of Computer Science and Electrical Engineering, West Virginia University, Morgantown, WV 26506, USA
| | - Cristian Sirbu
- Charleston Area Medical Center, Institute for Academic Medicine, Charleston, WV 25304, USA
- Department of Behavioral Medicine and Psychiatry, West Virginia University School of Medicine, Charleston Division, Charleston, WV 25304, USA
| | - Umesh K Reddy
- Department of Biology, Gus R. Douglass Institute, West Virginia State University, Institute, WV 25112, USA
| |
Collapse
|
5
|
Adetunji TL, Olawale F, Olisah C, Adetunji AE, Aremu AO. Capsaicin: A Two-Decade Systematic Review of Global Research Output and Recent Advances Against Human Cancer. Front Oncol 2022; 12:908487. [PMID: 35912207 PMCID: PMC9326111 DOI: 10.3389/fonc.2022.908487] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/30/2022] [Indexed: 12/23/2022] Open
Abstract
Capsaicin (8-methyl-N-vanillyl-6-nonenamide) is one of the most important natural products in the genus Capsicum. Due to its numerous biological effects, there has been extensive and increasing research interest in capsaicin, resulting in increased scientific publications in recent years. Therefore, an in-depth bibliometric analysis of published literature on capsaicin from 2001 to 2021 was performed to assess the global research status, thematic and emerging areas, and potential insights into future research. Furthermore, recent research advances of capsaicin and its combination therapy on human cancer as well as their potential mechanisms of action were described. In the last two decades, research outputs on capsaicin have increased by an estimated 18% per year and were dominated by research articles at 93% of the 3753 assessed literature. In addition, anti-cancer/pharmacokinetics, cytotoxicity, in vivo neurological and pain research studies were the keyword clusters generated and designated as thematic domains for capsaicin research. It was evident that the United States, China, and Japan accounted for about 42% of 3753 publications that met the inclusion criteria. Also, visibly dominant collaboration nodes and networks with most of the other identified countries were established. Assessment of the eligible literature revealed that the potential of capsaicin for mitigating cancer mainly entailed its chemo-preventive effects, which were often linked to its ability to exert multi-biological effects such as anti-mutagenic, antioxidant and anti-inflammatory activities. However, clinical studies were limited, which may be related to some of the inherent challenges associated with capsaicin in the limited clinical trials. This review presents a novel approach to visualizing information about capsaicin research and a comprehensive perspective on the therapeutic significance and applications of capsaicin in the treatment of human cancer.
Collapse
Affiliation(s)
- Tomi Lois Adetunji
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Femi Olawale
- Nano-Gene and Drug Delivery Group, Discipline of Biochemistry, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| | - Chijioke Olisah
- Department of Botany and Institute for Coastal and Marine Research, Nelson Mandela University, Port Elizabeth, South Africa
| | | | - Adeyemi Oladapo Aremu
- Indigenous Knowledge Systems Centre, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
6
|
Beneficial effects of dietary capsaicin in gastrointestinal health and disease. Exp Cell Res 2022; 417:113227. [DOI: 10.1016/j.yexcr.2022.113227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/12/2022] [Accepted: 05/23/2022] [Indexed: 11/21/2022]
|
7
|
Oral Capsaicinoid Administration Alters the Plasma Endocannabinoidome and Fecal Microbiota of Reproductive-Aged Women Living with Overweight and Obesity. Biomedicines 2021; 9:biomedicines9091246. [PMID: 34572432 PMCID: PMC8471891 DOI: 10.3390/biomedicines9091246] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/12/2021] [Accepted: 09/13/2021] [Indexed: 12/17/2022] Open
Abstract
Capsaicinoids, the pungent principles of chili peppers and prototypical activators of the transient receptor potential of the vanilloid type-1 (TRPV1) channel, which is a member of the expanded endocannabinoid system known as the endocannabinoidome (eCBome), counteract food intake and obesity. In this exploratory study, we examined the blood and stools from a subset of the participants in a cohort of reproductive-aged women with overweight/obesity who underwent a 12-week caloric restriction of 500 kcal/day with the administration of capsaicinoids (two capsules containing 100 mg of a capsicum annuum extract (CAE) each for a daily dose of 4 mg of capsaicinoids) or a placebo. Samples were collected immediately before and after the intervention, and plasma eCBome mediator levels (from 23 participants in total, 13 placebo and 10 CAE) and fecal microbiota taxa (from 15 participants in total, 9 placebo and 6 CAE) were profiled using LC-MS/MS and 16S metagenomic sequencing, respectively. CAE prevented the reduced caloric-intake-induced decrease in beneficial eCBome mediators, i.e., the TRPV1, GPR119 and/or PPARα agonists, N-oleoyl-ethanolamine, N-linoleoyl-ethanolamine and 2-oleoyl-glycerol, as well as the anti-inflammatory N-acyl-ethanolamines N-docosapentaenyl-ethanolamine and N-docosahexaenoyl-ethanolamine. CAE produced few but important alterations in the fecal microbiota, such as an increased relative abundance of the genus Flavonifractor, which is known to be inversely associated with obesity. Correlations between eCBome mediators and other potentially beneficial taxa were also observed, thus reinforcing the hypothesis of the existence of a link between the eCBome and the gut microbiome in obesity.
Collapse
|
8
|
Zhang Y, Wang Y, Zhou D, Wang K, Wang X, Wang X, Jiang Y, Zhao M, Yu R, Zhou X. Radiation-induced YAP activation confers glioma radioresistance via promoting FGF2 transcription and DNA damage repair. Oncogene 2021; 40:4580-4591. [PMID: 34127812 PMCID: PMC8266683 DOI: 10.1038/s41388-021-01878-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/20/2021] [Accepted: 05/28/2021] [Indexed: 12/19/2022]
Abstract
Although radiotherapy is a well-known effective non-surgical treatment for malignant gliomas, the therapeutic efficacy is severely limited due to the radioresistance of tumor cells. Previously, we demonstrated that Yes-associated protein (YAP) promotes glioma malignant progression. However, whether YAP plays a role in radioresistance and its potential value in cancer treatment are still unclear. In this study, we found that high YAP expression is associated with poor prognosis in malignant glioma patients undergoing radiotherapy. Research in immortalized cell lines and primary cells from GBM patients revealed that YAP exhibited a radioresistant effect on gliomas via promoting DNA damage repair. Mechanistically, after radiation, YAP was translocated into the nucleus, where it promoted the expression and secretion of FGF2, leading to MAPK-ERK pathway activation. FGF2 is a novel target gene of YAP. Inhibition of YAP-FGF2-MAPK signaling sensitizes gliomas to radiotherapy and prolongs the survival of intracranial cell-derived and patient-derived xenograft models. These results suggest that YAP-FGF2-MAPK is a key mechanism of radioresistance and is an actionable target for improving radiotherapy efficacy.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xu Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yang Jiang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- The Graduate School, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
9
|
Shi S, Li C, Zhang Y, Deng C, Liu W, Du J, Li Q, Ji Y, Guo L, Liu L, Hu H, Liu Y, Cui H. Dihydrocapsaicin Inhibits Cell Proliferation and Metastasis in Melanoma via Down-regulating β-Catenin Pathway. Front Oncol 2021; 11:648052. [PMID: 33833997 PMCID: PMC8023049 DOI: 10.3389/fonc.2021.648052] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 03/04/2021] [Indexed: 11/13/2022] Open
Abstract
Dihydrocapsaicin (DHC) is one of the main components of capsaicinoids in Capsicum. It has been reported that DHC exerts anti-cancer effects on diverse malignant tumors, such as colorectal cancer, breast cancer, and glioma. However, studies focused on the effect of DHC upon melanoma have rarely been done. In the present study, melanoma A375 and MV3 cell lines were treated with DHC and the cell proliferation, migration, and invasion were significantly suppressed. Furthermore, DHC effectively inhibited xenograft tumor growth and pulmonary metastasis of melanoma cells in NOD/SCID mice model. It was identified that β-catenin, which plays significant roles in cell proliferation and epithelial-mesenchymal transition, was down-regulated after DHC treatment. In addition, cyclin D1, c-Myc, MMP2, and MMP7, which are critical in diverse cellular process regulation as downstream proteins of β-catenin, were all decreased. Mechanistically, DHC accelerates ubiquitination of β-catenin and up-regulates the beta-transducin repeat containing E3 ubiquitin protein ligase (BTRC) in melanoma cells. The DHC induced suppression of cell proliferation, migration, and invasion were partly rescued by exogenous β-catenin overexpression, both in vitro and in vivo. Taken together, DHC may serve as a candidate natural compound for human melanoma treatment through β-catenin pathway.
Collapse
Affiliation(s)
- Shaomin Shi
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- Department of Dermatology, Fifth Hospital of Shijiazhuang, Shijiazhuang, China
| | - Chongyang Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Yanli Zhang
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Chaowei Deng
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wei Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Juan Du
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Qian Li
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yacong Ji
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Leiyang Guo
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lichao Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huanrong Hu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaling Liu
- Department of Dermatology, Third Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongjuan Cui
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
10
|
Zhao M, Zhang Y, Jiang Y, Wang K, Wang X, Zhou D, Wang Y, Yu R, Zhou X. YAP promotes autophagy and progression of gliomas via upregulating HMGB1. J Exp Clin Cancer Res 2021; 40:99. [PMID: 33726796 PMCID: PMC7968184 DOI: 10.1186/s13046-021-01897-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 03/01/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Due to the hypoxia and nutrient deficiency microenvironment, glioblastoma (GBM) exhibits high autophagy activity and autophagy plays an important role in the progression of GBM. However, the molecular mechanism of autophagy in GBM progression remains unclear. The aim of this study is to delve out the role and mechanism of yes-associated protein (YAP) in GBM autophagy and progression. METHODS The level of autophagy or autophagy flux were assessed by using western blotting, GFP-LC3 puncta (Live) imaging, transmission electron microscopy and GFP-RFP-LC3 assay. The GBM progression was detected by using CCK8, EdU, nude mouse xenograft and Ki67 staining. Isobaric tags for relative and absolute quantification (iTraq) quantitative proteomics was used to find out the mediator of YAP in autophagy. Expression levels of YAP and HMGB1 in tissue samples from GBM patients were examined by Western blotting, tissue microarray and immunohistochemistry. RESULTS YAP over-expression enhanced glioma cell autophagy under basal and induced conditions. In addition, blocking autophagy by chloroquine abolished the promoting effect of YAP on glioma growth. Mechanistically, YAP over-expression promoted the transcription and translocation of high mobility group box 1(HMGB1), a well-known regulator of autophagy, from nucleus to cytoplasm. Down-regulation of HMGB1 abolished the promoting effect of YAP on autophagy and glioma growth. Furthermore, the expression of YAP and HMGB1 were positively associated with each other and suggested poor prognosis for clinical GBM. CONCLUSION YAP promoted glioma progression by enhancing HMGB1-mediated autophagy, indicating that YAP-HMGB1 axis was a feasible therapeutic target for GBM. Our study revealed a clinical opportunity involving the combination of chemo-radiotherapy with pharmacological autophagy inhibition for treating GBM patients with YAP high expression.
Collapse
Affiliation(s)
- Min Zhao
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yu Zhang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yang Jiang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Present address: Clinical Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Kai Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xiang Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Ding Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Yan Wang
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- The Graduate School, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Rutong Yu
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China
| | - Xiuping Zhou
- Institute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, China.
| |
Collapse
|
11
|
Agarwal S, Maekawa T. Nano delivery of natural substances as prospective autophagy modulators in glioblastoma. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 29:102270. [PMID: 32702467 DOI: 10.1016/j.nano.2020.102270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/14/2022]
Abstract
Glioblastoma is the most destructive type of malignant brain tumor in humans due to cancer relapse. Latest studies have indicated that cancer cells are more reliant on autophagy for survival than non-cancer cells. Autophagy is entitled as programmed cell death type II and studies imply that it is a comeback of cancer cells to innumerable anti-cancer therapies. To diminish the adverse consequences of chemotherapeutics, numerous herbs of natural origin have been retained in cancer treatments. Additionally, autophagy induction occurs via their tumor suppressive actions that could cause cell senescence and increase apoptosis-independent cell death. However, most of the drugs have poor solubility and thus nano drug delivery systems possess excessive potential to improve the aqueous solubility and bioavailability of encapsulated drugs. There is a pronounced need for more therapies for glioblastoma treatment and hereby, the fundamental mechanisms of natural autophagy modulators in glioblastoma are prudently reviewed in this article.
Collapse
Affiliation(s)
- Srishti Agarwal
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan.
| | - Toru Maekawa
- Bio-Nano Electronics Research Center, Graduate School of Interdisciplinary New Science, Toyo University, Kawagoe, Saitama, Japan
| |
Collapse
|
12
|
Liu X, Yue C, Shi L, Liu G, Cao Q, Shan Q, Wang Y, Chen X, Li H, Wang J, Gao S, Niu M, Yu R. MALT1 is a potential therapeutic target in glioblastoma and plays a crucial role in EGFR-induced NF-κB activation. J Cell Mol Med 2020; 24:7550-7562. [PMID: 32452133 PMCID: PMC7339184 DOI: 10.1111/jcmm.15383] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 04/09/2020] [Accepted: 04/22/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant tumour in the adult brain and hard to treat. Nuclear factor κB (NF-κB) signalling has a crucial role in the tumorigenesis of GBM. EGFR signalling is an important driver of NF-κB activation in GBM; however, the correlation between EGFR and the NF-κB pathway remains unclear. In this study, we investigated the role of mucosa-associated lymphoma antigen 1 (MALT1) in glioma progression and evaluated the anti-tumour activity and effectiveness of MI-2, a MALT1 inhibitor in a pre-clinical GBM model. We identified a paracaspase MALT1 that is involved in EGFR-induced NF-kB activation in GBM. MALT1 deficiency or inhibition significantly affected the proliferation, survival, migration and invasion of GBM cells both in vitro and in vivo. Moreover, MALT1 inhibition caused G1 cell cycle arrest by regulating multiple cell cycle-associated proteins. Mechanistically, MALTI inhibition blocks the degradation of IκBα and prevents the nuclear accumulation of the NF-κB p65 subunit in GBM cells. This study found that MALT1, a key signal transduction cascade, can mediate EGFR-induced NF-kB activation in GBM and may be potentially used as a novel therapeutic target for GBM.
Collapse
Affiliation(s)
- Xuejiao Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Surgical Deparment 9, Xuzhou Children's Hospital, Xuzhou, China
| | - Lin Shi
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Guanzheng Liu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Qianqian Shan
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Yifeng Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Huan Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Jie Wang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Blood Diseases Institute, Xuzhou Medical University, Xuzhou, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, China.,Department of Neurosurgery, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Shan Q, Li S, Cao Q, Yue C, Niu M, Chen X, Shi L, Li H, Gao S, Liang J, Yu R, Liu X. Inhibition of chromosomal region maintenance 1 suppresses the migration and invasion of glioma cells via inactivation of the STAT3/MMP2 signaling pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2020; 24:193-201. [PMID: 32392910 PMCID: PMC7193913 DOI: 10.4196/kjpp.2020.24.3.193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 12/19/2019] [Accepted: 12/20/2019] [Indexed: 01/07/2023]
Abstract
Chromosomal region maintenance 1 (CRM1) is associated with an adverse prognosis in glioma. We previously reported that CRM1 inhibition suppressed glioma cell proliferation both in vitro and in vivo. In this study, we investigated the role of CRM1 in the migration and invasion of glioma cells. S109, a novel reversible selective inhibitor of CRM1, was used to treat Human glioma U87 and U251 cells. Cell migration and invasion were evaluated by wound-healing and transwell invasion assays. The results showed that S109 significantly inhibited the migration and invasion of U87 and U251 cells. However, mutation of Cys528 in CRM1 abolished the inhibitory activity of S109 in glioma cells. Furthermore, we found that S109 treatment decreased the expression level and activity of MMP2 and reduced the level of phosphorylated STAT3 but not total STAT3. Therefore, the inhibition of migration and invasion induced by S109 may be associated with the downregulation of MMP2 activity and expression, and inactivation of the STAT3 signaling pathway. These results support our previous conclusion that inhibition of CRM1 is an attractive strategy for the treatment of glioma.
Collapse
Affiliation(s)
- Qianqian Shan
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shengsheng Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Qiyu Cao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Chenglong Yue
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Jiangsu Key Laboratory of Bone Marrow Stem Cell, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xiangyu Chen
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Lin Shi
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Huan Li
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Jun Liang
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Rutong Yu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| | - Xuejiao Liu
- Insititute of Nervous System Diseases, The Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
- Department of Neurosurgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China
| |
Collapse
|
14
|
Liu X, Tu Y, Wang Y, Zhou D, Chong Y, Shi L, Liu G, Zhang X, Wu S, Li H, Gao S, Niu M, Yu R. Reversible inhibitor of CRM1 sensitizes glioblastoma cells to radiation by blocking the NF-κB signaling pathway. Cancer Cell Int 2020; 20:97. [PMID: 32256206 PMCID: PMC7106748 DOI: 10.1186/s12935-020-01186-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Activation of nuclear factor-kappa B (NF-κΒ) through DNA damage is one of the causes of tumor cell resistance to radiotherapy. Chromosome region 1 (CRM1) regulates tumor cell proliferation, drug resistance, and radiation resistance by regulating the nuclear-cytoplasmic translocation of important tumor suppressor proteins or proto-oncoproteins. A large number of studies have reported that inhibition of CRM1 suppresses the activation of NF-κΒ. Thus, we hypothesize that the reversible CRM1 inhibitor S109 may induce radiosensitivity in glioblastoma (GBM) by regulating the NF-κΒ signaling pathway. METHODS This study utilized the cell counting kit-8 (CCK-8), 5-ethynyl-2'-deoxyuridine (EdU), and colony formation assay to evaluate the effect of S109 combined with radiotherapy on the proliferation and survival of GBM cells. The therapeutic efficacy of S109 combined with radiotherapy was evaluated in vivo to explore the therapeutic mechanism of S109-induced GBM radiosensitization. RESULTS We found that S109 combined with radiotherapy significantly inhibited GBM cell proliferation and colony formation. By regulating the levels of multiple cell cycle- and apoptosis-related proteins, the combination therapy induced G1 cell cycle arrest in GBM cells. In vivo studies showed that S109 combined with radiotherapy significantly inhibited the growth of intracranial GBM and prolonged survival. Importantly, we found that S109 combined with radiotherapy promoted the nuclear accumulation of IκΒα, and inhibited phosphorylation of p65 and the transcriptional activation of NF-κΒ. CONCLUSION Our findings provide a new therapeutic regimen for improving GBM radiosensitivity as well as a scientific basis for further clinical trials to evaluate this combination therapy.
Collapse
Affiliation(s)
- Xuejiao Liu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yiming Tu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu China
| | - Yifeng Wang
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Di Zhou
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Yulong Chong
- Department of Neurosurgery, Suqian Hospital Affiliated to Xuzhou Medical University, Suqian, Jiangsu China
| | - Lin Shi
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Guanzheng Liu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Xu Zhang
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Sijin Wu
- College of pharmacy, The Ohio State University, Columbus, OH USA
| | - Huan Li
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Shangfeng Gao
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Mingshan Niu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Blood Diseases Institute, Xuzhou Medical University, Xuzhou, Jiangsu China
| | - Rutong Yu
- Insititute of Nervous System Diseases, Affiliated Hospital of Xuzhou Medical University, Xuzhou Medical University, Xuzhou, Jiangsu China
- Department of Neurosurgery, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu China
| |
Collapse
|
15
|
Uncovering the anti-metastasis effects and mechanisms of capsaicin against hepatocellular carcinoma cells by metabolomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
16
|
Maruca A, Catalano R, Bagetta D, Mesiti F, Ambrosio FA, Romeo I, Moraca F, Rocca R, Ortuso F, Artese A, Costa G, Alcaro S, Lupia A. The Mediterranean Diet as source of bioactive compounds with multi-targeting anti-cancer profile. Eur J Med Chem 2019; 181:111579. [PMID: 31398616 DOI: 10.1016/j.ejmech.2019.111579] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 07/29/2019] [Accepted: 07/30/2019] [Indexed: 12/20/2022]
Abstract
Many bioactive agents have been extracted from plants or belong to functional foods and have been considered in the treatment of serious and multifactorial diseases, such as cancer. In particular, this review is focused on the anti-cancer properties owned by several natural products typically from the Mediterranean area. In some regions of the South of Italy, a lower cancer incidence has been observed. There is increasing evidence that adherence to a Mediterranean dietary pattern correlates with reduced risk of several cancer types. This could be mainly attributed to the typical lifestyle aspects of the Mediterranean diet, such as high consumption of fruit and vegetables. In this review, the main natural products of the Mediterranean area are discussed, with particular attention on their anti-cancer properties endowed with multi-target profiles.
Collapse
Affiliation(s)
- Annalisa Maruca
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Raffaella Catalano
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Donatella Bagetta
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesco Mesiti
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Francesca Alessandra Ambrosio
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Isabella Romeo
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Chemistry and Chemical Technology, University of Calabria, Via Pietro Bucci, 87036, Arcavacata di Rende, Cosenza, Italy
| | - Federica Moraca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Pharmacy, University of Naples "Federico II", Via D. Montesano, 49, 80131, Naples, Italy
| | - Roberta Rocca
- Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Department of Experimental and Clinical Medicine "Magna Græcia" University, Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy.
| | - Francesco Ortuso
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Anna Artese
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Giosuè Costa
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Stefano Alcaro
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| | - Antonio Lupia
- Dipartimento di Scienze della Salute, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy; Net4Science srl, Università "Magna Græcia", Campus Salvatore Venuta, Viale Europa, 88100, Catanzaro, Italy
| |
Collapse
|
17
|
Zhao S, Pi C, Ye Y, Zhao L, Wei Y. Recent advances of analogues of curcumin for treatment of cancer. Eur J Med Chem 2019; 180:524-535. [PMID: 31336310 DOI: 10.1016/j.ejmech.2019.07.034] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/26/2019] [Accepted: 07/09/2019] [Indexed: 01/01/2023]
Abstract
Curcumin (CU), an edible natural pigment from Curcuma Longa, has demonstrated extensive anti-tumor effect in vivo and in vitro. With the property of reversing drug resistance and low toxicity, CU has been considered to develop a new adjuvant chemotherapy protocol of cancer. However, the poor stability, solubility, in vivo bioavailability and weak activity of CU greatly limit its clinical application. Therefore, CU analogues have been extensively studied. Starting from the study of natural CU analogues, multiple approaches are being sought to obtain more stable, soluble and effective analogues of CU. This review focuses on the progress of these approaches to more potent CU analogues.
Collapse
Affiliation(s)
- Shijie Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China
| | - Chao Pi
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China
| | - Yun Ye
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China; Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, No.25, Taiping Street, Luzhou, Sichuan, 646000, China
| | - Ling Zhao
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China.
| | - Yumeng Wei
- Department of Pharmaceutics, School of Pharmacy, Southwest Medical University, No. 319, Zhongshan Rd Sanduan, Luzhou, Sichuan, 646000, PR China.
| |
Collapse
|
18
|
Chu H, Li M, Wang X. Capsaicin induces apoptosis and autophagy in human melanoma cells. Oncol Lett 2019; 17:4827-4834. [PMID: 31186689 PMCID: PMC6507355 DOI: 10.3892/ol.2019.10206] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 02/08/2019] [Indexed: 12/20/2022] Open
Abstract
Melanoma is the most lethal type of skin cancer; rapid metastasis and resistance to conventional radio- and chemotherapy make melanoma the most aggressive type of skin cancer. In addition, there is a high recurrence rate within 1 year among patients with melanoma following traditional treatment by chemotherapy or immunotherapy, and these treatment options are only useful in advanced stages. As the efficiency of treatment options for melanoma is not ideal, the present study aimed to confirm that capsaicin has inhibitory effects on the human melanoma A375 and C8161 cell lines in vitro. Capsaicin, the active component of peppers, has been reported to possess substantial anticarcinogenic and antimutagenic activities. Additionally, capsaicin exhibits an inhibitory effect on tumor growth in numerous malignant cell lines. In the present study, flow cytometry, fluorescent puncta detection and western blotting were performed. The experimental results indicated that capsaicin activated apoptosis, and that apoptosis induction was associated with poly(ADP-ribose) polymerase (PARP) cleavage and activation of caspase-3. Additionally, the formation of autophagosomes and accumulation of microtubule-associated proteins 1A/1B light chain 3B-II and beclin 1 suggested that capsaicin induced autophagy in human melanoma cells. Furthermore, inhibiting capsaicin-induced autophagy promoted the activation of cleaved caspase-3 and PARP proteins, which are associated with apoptosis. In addition, inhibition of autophagy using 3-MA enhanced capsaicin-induced cell death, indicating that capsaicin-induced autophagy is a pro-survival process in cells. In conclusion, the results of the present study revealed that capsaicin induced cell apoptosis and autophagy in human melanoma cells and capsaicin may be considered as a novel candidate drug for melanoma treatment.
Collapse
Affiliation(s)
- Haihan Chu
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Meng Li
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| | - Xiuchun Wang
- Department of Burn and Plastic Surgery, Jining First People's Hospital, Jining, Shandong 272011, P.R. China
| |
Collapse
|
19
|
Zheng J, Zheng S, Feng Q, Zhang Q, Xiao X. Dietary capsaicin and its anti-obesity potency: from mechanism to clinical implications. Biosci Rep 2017; 37:BSR20170286. [PMID: 28424369 PMCID: PMC5426284 DOI: 10.1042/bsr20170286] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/16/2017] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Obesity is a growing public health problem, which has now been considered as a pandemic non-communicable disease. However, the efficacy of several approaches for weight loss is limited and variable. Thus, alternative anti-obesity treatments are urgently warranted, which should be effective, safe, and widely available. Active compounds isolated from herbs are similar with the practice of Traditional Chinese Medicine, which has a holistic approach that can target to several organs and tissues in the whole body. Capsaicin, a major active compound from chili peppers, has been clearly demonstrated for its numerous beneficial roles in health. In this review, we will focus on the less highlighted aspect, in particular how dietary chili peppers and capsaicin consumption reduce body weight and its potential mechanisms of its anti-obesity effects. With the widespread pandemic of overweight and obesity, the development of more strategies for the treatment of obesity is urgent. Therefore, a better understanding of the role and mechanism of dietary capsaicin consumption and metabolic health can provide critical implications for the early prevention and treatment of obesity.
Collapse
Affiliation(s)
- Jia Zheng
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Sheng Zheng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qianyun Feng
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Qian Zhang
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| | - Xinhua Xiao
- Department of Endocrinology, Key Laboratory of Endocrinology, Ministry of Health, Peking Union Medical College Hospital, Diabetes Research Center of Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
20
|
Lin Q, Wang Y, Chen D, Sheng X, Liu J, Xiong H. Cisplatin regulates cell autophagy in endometrial cancer cells via the PI3K/AKT/mTOR signalling pathway. Oncol Lett 2017; 13:3567-3571. [PMID: 28521459 PMCID: PMC5431239 DOI: 10.3892/ol.2017.5894] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/17/2017] [Indexed: 12/19/2022] Open
Abstract
Endometrial cancer is the most common gynaecological malignancy encountered in developed countries and the second most common in the developing world. The five-year survival rate of patients with endometrial cancer diagnosed at a late stage is <30%. Therefore, it is critical to develop a suitable chemotherapeutic regimen for late-stage endometrial cancer. Cisplatin (CDDP) is a first-line chemotherapeutic drug for endometrial cancer chemotherapy. The present study investigated the molecular mechanism underlying the effect of CDDP on endometrial cancer from the perspective of cell autophagy. Ishikawa cells were treated with 10, 20, 40 or 80 µg/ml CDDP for 12, 24, 48 and 72 h. The cells were then harvested and subjected to cell proliferation assays. Based on the results, 20 µg/ml CDDP was selected as the treatment used for 12 and 24 h for the assays. To detect the effect of CDDP on Ishikawa cell autophagy, autophagosome formation was observed using a transmission electron microscope, and the expression level of autophagy-related gene microtubule-associated protein 1 light chain 3α, was examined using immunofluorescence microscopy. The results demonstrated that CDDP treatment promoted cell autophagy in Ishikawa cells. In addition, the total and phosphorylated protein levels of phosphoinositide 3-kinase (PI3K) p85, protein kinase B (AKT) and mammalian target of rapamycin (mTOR), the key proteins of the PI3K/AKT/mTOR signalling pathway, were detected by western blot analysis. The results indicated that CDDP treatment inactivated the PI3K/AKT/mTOR signalling pathway. To further examine whether CDDP affects cell autophagy in Ishikawa cells via the PI3K/AKT/mTOR signalling pathway, the cells were co-treated with a PI3K activator, insulin-like growth factor-1 (IGF-1). The results demonstrated that IGF-1 co-treatment reversed the effect of CDDP on cell autophagy in Ishikawa cells. In brief, the present study hypothesized that CDDP may regulate cell autophagy in the Ishikawa endometrial cancer cell line via the PI3K/AKT/mTOR signalling pathway.
Collapse
Affiliation(s)
- Qiongyan Lin
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China.,Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Yifeng Wang
- Department of Gynaecology and Obstetrics, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, P.R. China
| | - Dunjin Chen
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Xiujie Sheng
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Juan Liu
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| | - Hanzhen Xiong
- Department of Gynaecology and Obstetrics, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong 510150, P.R. China
| |
Collapse
|
21
|
Ramos-Torres Á, Bort A, Morell C, Rodríguez-Henche N, Díaz-Laviada I. The pepper's natural ingredient capsaicin induces autophagy blockage in prostate cancer cells. Oncotarget 2016; 7:1569-83. [PMID: 26625315 PMCID: PMC4811481 DOI: 10.18632/oncotarget.6415] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/16/2015] [Indexed: 12/22/2022] Open
Abstract
Capsaicin, the pungent ingredient of red hot chili peepers, has been shown to have anti-cancer activities in several cancer cells, including prostate cancer. Several molecular mechanisms have been proposed on its chemopreventive action, including ceramide accumulation, endoplasmic reticulum stress induction and NFκB inhibition. However, the precise mechanisms by which capsaicin exerts its anti-proliferative effect in prostate cancer cells remain questionable. Herein, we have tested the involvement of autophagy on the capsaicin mechanism of action on prostate cancer LNCaP and PC-3 cells. The results showed that capsaicin induced prostate cancer cell death in a time- and concentration-dependent manner, increased the levels of microtubule-associated protein light chain 3-II (LC3-II, a marker of autophagy) and the accumulation of the cargo protein p62 suggesting an autophagy blockage. Moreover, confocal microscopy revealed that capsaicin treatment increased lysosomes which co-localized with LC3 positive vesicles in a similar extent to that produced by the lysosomal protease inhibitors E64 and pepstatin pointing to an autophagolysosomes breakdown inhibition. Furthermore, we found that capsaicin triggered ROS generation in cells, while the levels of ROS decreased with N-acetyl-cysteine (NAC), a ROS scavenger. Co-treatment of cells with NAC and capsaicin abrogated the effects of capsaicin on autophagy and cell death. Normal prostate PNT2 and RWPE-1 cells were more resistant to capsaicin-induced cytotoxicity and did not accumulate p62 protein. Taken together, these results suggest that ROS-mediated capsaicin-induced autophagy blockage contributes to antiproliferation in prostate cancer cells, which provides new insights into the anticancer molecular mechanism of capsaicin.
Collapse
Affiliation(s)
- Ágata Ramos-Torres
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine, Alcala University, Alcala de Henares 28871, Madrid, Spain
| | - Alicia Bort
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine, Alcala University, Alcala de Henares 28871, Madrid, Spain
| | - Cecilia Morell
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine, Alcala University, Alcala de Henares 28871, Madrid, Spain
| | - Nieves Rodríguez-Henche
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine, Alcala University, Alcala de Henares 28871, Madrid, Spain
| | - Inés Díaz-Laviada
- Department of System Biology, Biochemistry and Molecular Biology Unit, School of Medicine, Alcala University, Alcala de Henares 28871, Madrid, Spain
| |
Collapse
|
22
|
Varghese S, Kubatka P, Rodrigo L, Gazdikova K, Caprnda M, Fedotova J, Zulli A, Kruzliak P, Büsselberg D. Chili pepper as a body weight-loss food. Int J Food Sci Nutr 2016; 68:392-401. [PMID: 27899046 DOI: 10.1080/09637486.2016.1258044] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Chili has culinary as well as medical importance. Studies in humans, using a wide range of doses of chili intake (varying from a single meal to a continuous uptake for up to 12 weeks), concluded that it facilitates weight loss. In regard to this, the main targets of chili are fat metabolism, energy expenditure, and thermogenesis. To induce weight loss, the active substance of chili, capsaicin, activates Transient Receptor Potential Cation Channel sub-family V member 1 (TRPV1) channels) receptors causing an increase in intracellular calcium levels and triggering the sympathetic nervous system. Apart from TRPV1, chili directly reduces energy expenditure by activating Brown Adipose Tissue. Weight loss by chili is also the result of an improved control of insulin, which supports weight management and has positive effects for treatment for diseases like obesity, diabetes and cardiovascular disorders. This review summarizes the major pathways by which chili contributes to ameliorating parameters that help weight management and how the consumption of chili can help in accelerating weight loss through dietary modifications.
Collapse
Affiliation(s)
- Sharon Varghese
- a Weill Cornell Medicine in Qatar , Qatar Foundation-Education City , Doha , Qatar
| | - Peter Kubatka
- b Department of Medical Biology, Jessenius Faculty of Medicine , Comenius University in Bratislava , Martin , Slovakia
| | - Luis Rodrigo
- c Department of Gastroenterology, Faculty of Medicine , University of Oviedo, Central University Hospital of Asturias (HUCA) , Oviedo , Spain
| | - Katarina Gazdikova
- d Department of Nutrition, Faculty of Nursing and Professional Health Studies, Faculty of Medicine , Slovak Medical University , Bratislava , Slovakia.,e Department of General Medicine, Faculty of Medicine , Slovak Medical University , Bratislava , Slovakia
| | - Martin Caprnda
- f 2nd Department of Internal Medicine, Faculty of Medicine , Comenius University and University Hospital , Bratislava , Slovakia
| | - Julia Fedotova
- g Laboratory of Neuroendocrinology , I.P. Pavlov Institute of Physiology, Russian Academy of Sciences , St. Petersburg , Russia.,h Laboratory of Comparative Somnology and Neuroendocrinology , I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences , St. Petersburg , Russia.,i International Research Centre «Biotechnologies of the Third Millennium» , ITMO University , St. Petersburg , Russia
| | - Anthony Zulli
- j Centre for Chronic Disease, College of Health and Biomedicine , Victoria University , Werribee , Australia
| | - Peter Kruzliak
- k Department of Chemical Drugs, Faculty of Pharmacy , University of Veterinary and Pharmaceutical Sciences , Brno , Czech Republic.,l Department of Surgery, Center for Vascular Disease , St. Anne?s University Hospital, Faculty of Medicine, Masaryk University , Brno , Czech Republic
| | - Dietrich Büsselberg
- a Weill Cornell Medicine in Qatar , Qatar Foundation-Education City , Doha , Qatar
| |
Collapse
|
23
|
Liu T, Wang G, Tao H, Yang Z, Wang Y, Meng Z, Cao R, Xiao Y, Wang X, Zhou J. Capsaicin mediates caspases activation and induces apoptosis through P38 and JNK MAPK pathways in human renal carcinoma. BMC Cancer 2016; 16:790. [PMID: 27729033 PMCID: PMC5059898 DOI: 10.1186/s12885-016-2831-y] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 10/05/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Renal cell carcinoma (RCC) is one of the tumors most refractory to chemotherapy to date. Therefore, novel therapeutic agents are urgently needed for this disease. Capsaicin (CPS), a natural active ingredient of green and red peppers, and a ligand of transient receptor potential vanilloid type 1 (TRPV1), has been showed potential in suppression of tumorigenesis of several cancers. Nonetheless, the anti-cancer activity of CPS has never been studied in human RCC. METHODS CCK8 analysis, LDH release activity and ROS generation analysis, flow cytometry analysis, and nuclear staining test were performed to test the influence of CPS in cultured cells in vitro, meanwhile western blot was done to uncover the precise molecular mechanisms. 786-O renal cancer xenografts were builded to investigate the antitumor activity of CPS in vivo. RESULTS We found treatment of CPS reduced proliferation of renal carcinoma cells, which could be attenuated by TRPV1 representative antagonist capsazepine (CPZ). CPS induced obvious apoptosis in renal carcinoma cells. These events were associated with substantial up-regulation of pro-apoptotic genes including c-myc, FADD, Bax and cleaved-caspase-3, -8, and -9, while down-regulation of anti-apoptotic gene Bcl2. Besides, CPS-treatment activated P38 and JNK MAPK pathways, yet P38 and JNK inhibitors afforded protection against CPS-induced apoptosis by abolishing activation of caspase-3, -8, and -9. Furthermore, CPS significantly slowed the growth of 786-O renal cancer xenografts in vivo. CONCLUSIONS Such results reveal that CPS is an efficient and potential drug for management of human RCC.
Collapse
Affiliation(s)
- Tao Liu
- Department of Urology, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China
| | - Gang Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Huangheng Tao
- Department of Endodontics, Stomatology of Wuhan University, Wuhan, 430079, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yongzhi Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Zhe Meng
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Rui Cao
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Yu Xiao
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China
| | - Xinghuan Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Center for Medical Science Research, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Jiajie Zhou
- Department of Urology, Jingzhou Central Hospital, the Second Clinical Medical College, Yangtze University, Jingzhou, 434020, China.
| |
Collapse
|
24
|
Chen X, Tan M, Xie Z, Feng B, Zhao Z, Yang K, Hu C, Liao N, Wang T, Chen D, Xie F, Tang C. Inhibiting ROS-STAT3-dependent autophagy enhanced capsaicin–induced apoptosis in human hepatocellular carcinoma cells. Free Radic Res 2016; 50:744-55. [DOI: 10.3109/10715762.2016.1173689] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|