1
|
Wang J, Jiang N, Liu F, Wang C, Zhou W. Uncovering the intricacies of O-GlcNAc modification in cognitive impairment: New insights from regulation to therapeutic targeting. Pharmacol Ther 2025; 266:108761. [PMID: 39603350 DOI: 10.1016/j.pharmthera.2024.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/18/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
O-linked β-N-acetylglucosamine (O-GlcNAc) represents a post-translational modification that occurs on serine or threonine residues on various proteins. This conserved modification interacts with vital cellular pathways. Although O-GlcNAc is widely distributed throughout the body, it is particularly enriched in the brain, where most proteins are O-GlcNAcylated. Recent studies have established a causal link between O-GlcNAc regulation in the brain and alterations in neurophysiological function. Alterations in O-GlcNAc levels in the brain are associated with the pathogenesis of several neurogenic diseases that can lead to cognitive impairment. Remarkably, manipulation of O-GlcNAc levels demonstrated a protective effect on cognitive function. Although the precise molecular mechanism of O-GlcNAc modification in the nervous system remains elusive, its regulation is fundamental to multiple neural and cognitive functions, fluctuating levels during normal and pathological cognitive processes. In this review, we highlight the significant functional importance of O-GlcNAc modification in pathological cognitive impairments and the potential application of O-GlcNAc as a promising target for the intervention or amelioration of cognitive impairments.
Collapse
Affiliation(s)
- Jianhui Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Ning Jiang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Feng Liu
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Chenran Wang
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China
| | - Wenxia Zhou
- Beijing Institute of Pharmacology and Toxicology, Beijing 100850, China; State Key Laboratory of National Security Specially Needed Medicines, Beijing 100850, China.
| |
Collapse
|
2
|
Kaur D, Khan H, Grewal AK, Singh TG. Glycosylation: A new signaling paradigm for the neurovascular diseases. Life Sci 2024; 336:122303. [PMID: 38016576 DOI: 10.1016/j.lfs.2023.122303] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/14/2023] [Accepted: 11/23/2023] [Indexed: 11/30/2023]
Abstract
A wide range of life-threatening conditions with complicated pathogenesis involves neurovascular disorders encompassing Neurovascular unit (NVU) damage. The pathophysiology of NVU is characterized by several features including tissue hypoxia, stimulation of inflammatory and angiogenic processes, and the initiation of intricate molecular interactions, collectively leading to an elevation in blood-brain barrier permeability, atherosclerosis and ultimately, neurovascular diseases. The presence of compelling data about the significant involvement of the glycosylation in the development of diseases has sparked a discussion on whether the abnormal glycosylation may serve as a causal factor for neurovascular disorders, rather than being just recruited as a secondary player in regulating the critical events during the development processes like embryo growth and angiogenesis. An essential tool for both developing new anti-ischemic therapies and understanding the processes of ischemic brain damage is undertaking pre-clinical studies of neurovascular disorders. Together with the post-translational modification of proteins, the modulation of glycosylation and its enzymes implicates itself in several abnormal activities which are known to accelerate neuronal vasculopathy. Despite the failure of the majority of glycosylation-based preclinical and clinical studies over the past years, there is a significant probability to provide neuroprotection utilizing modern and advanced approaches to target abnormal glycosylation activity at embryonic stages as well. This article focuses on a variety of experimental evidence to postulate the interconnection between glycosylation and vascular disorders along with possible treatment options.
Collapse
Affiliation(s)
- Dapinder Kaur
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, 140401, Punjab, India
| | | | | |
Collapse
|
3
|
Ao C, Li C, Chen J, Tan J, Zeng L. The role of Cdk5 in neurological disorders. Front Cell Neurosci 2022; 16:951202. [PMID: 35966199 PMCID: PMC9368323 DOI: 10.3389/fncel.2022.951202] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Neurological disorders are a group of disorders with motor, sensory or cognitive damage, caused by dysfunction of the central or peripheral nervous system. Cyclin-dependent kinases 5 (Cdk5) is of vital significance for the development of the nervous system, including the migration and differentiation of neurons, the formation of synapses, and axon regeneration. However, when the nervous system is subject to pathological stimulation, aberrant activation of Cdk5 will induce abnormal phosphorylation of a variety of substrates, resulting in a cascade signaling pathway, and thus lead to pathological changes. Cdk5 is intimately related to the pathological mechanism of a variety of neurological disorders, such as A-β protein formation in Alzheimer’s disease, mitochondrial fragmentation in cerebral ischemia, and apoptosis of dopaminergic neurons in Parkinson’s disease. It is worth noting that Cdk5 inhibitors have been reported to have neuroprotective effects by inhibiting related pathological processes. Therefore, in this review, we will briefly introduce the physiological and pathological mechanisms of Cdk5 in the nervous system, focusing on the recent advances of Cdk5 in neurological disorders and the prospect of targeted Cdk5 for the treatment of neurological disorders.
Collapse
Affiliation(s)
- Chuncao Ao
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenchen Li
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinlun Chen
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Jieqiong Tan
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
- Hunan Key Laboratory of Medical Genetics, Central South University, Changsha, China
- Hunan Key Laboratory of Animal Model for Human Diseases, Central South University, Changsha, China
| | - Liuwang Zeng
- Department of Neurology, Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Liuwang Zeng
| |
Collapse
|
4
|
Li X, Wang B, Yu N, Yang L, Nan C, Sun Z, Guo L, Zhao Z. Gabapentin Alleviates Brain Injury in Intracerebral Hemorrhage Through Suppressing Neuroinflammation and Apoptosis. Neurochem Res 2022; 47:3063-3075. [PMID: 35809188 DOI: 10.1007/s11064-022-03657-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 11/29/2022]
Abstract
Neuroinflammation plays an important role in brain tissue injury during intracerebral hemorrhage. Gabapentin can reduce inflammation and oxidative stress through inhibiting nuclear factor κB (NFκB) signals. Here, we showed that gabapentin reduced brain tissue injury in ICH through suppressing NFκB-mediated neuroinflammation. ICH was induced by injecting collagenase IV into the right striatum of Sprague-Dawley rats. PC12 and BV2 cells injury induced by Hemin were used to simulate ICH in vitro. Inflammation and apoptosis were assessed in rat brain tissue and in vitro cells. The neurobehavioral scores were significantly decreased in ICH rats compared with sham rats. Phosphorylated IκB-α and cleaved caspase3, and apoptosis rate were significantly higher in tissue surrounding the hematoma than in brain tissues from rats subjected to sham surgery. Furthermore, serum IL-6 levels in ICH rats were higher than in sham rats. Gabapentin treatment significantly improved the behavioral scores, decreased levels of phosphorylated IκB-α and cleaved caspase3, apoptosis rate, and serum IL-6 level in ICH rats. Hemin-treated BV2 cells displayed higher levels of phosphorylated IκB-α, cleaved caspase3, and IL-6 in the supernatant compared with vehicle-treated cells. Hemin treatment induced a significantly lower level of peroxisome proliferator-activated receptor γ (PPARγ) in BV2 cells. BV2-PC12 co-culture cells treated by hemin displayed higher levels of cleaved caspase3 in PC12 cells. Furthermore, gabapentin treatment could reduce these effects induced by hemin and the protective effects of gabapentin were significantly attenuated by PPARγ inhibitor. Therefore, gabapentin may reduce inflammation and apoptosis induced by the ICH through PPARγ-NFκB pathway.
Collapse
Affiliation(s)
- Xiaopeng Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The First Hospital of Handan City, Handan, 056000, HeBei, China
| | - Bingqian Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, Affiliated Xing Tai People Hospital of Hebei Medical University, Xingtai, 054000, HeBei, China
| | - Ning Yu
- Department of Anesthesiology and Intensive Care Unit, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, HeBei, China
| | - Liang Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Chengrui Nan
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zhimin Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.,Department of Neurosurgery, The Third Hospital of Shijiazhuang City, Shijiazhuang, 050000, HeBei, China
| | - Lisi Guo
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China
| | - Zongmao Zhao
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, 215 Heping Road, Shijiazhuang, 050000, HeBei, China.
| |
Collapse
|
5
|
Ciraku L, Bacigalupa ZA, Ju J, Moeller RA, Le Minh G, Lee RH, Smith MD, Ferrer CM, Trefely S, Izzo LT, Doan MT, Gocal WA, D’Agostino L, Shi W, Jackson JG, Katsetos CD, Wellen KE, Snyder NW, Reginato MJ. O-GlcNAc transferase regulates glioblastoma acetate metabolism via regulation of CDK5-dependent ACSS2 phosphorylation. Oncogene 2022; 41:2122-2136. [PMID: 35190642 PMCID: PMC9410282 DOI: 10.1038/s41388-022-02237-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 01/10/2022] [Accepted: 02/08/2022] [Indexed: 01/03/2023]
Abstract
Glioblastomas (GBMs) preferentially generate acetyl-CoA from acetate as a fuel source to promote tumor growth. O-GlcNAcylation has been shown to be elevated by increasing O-GlcNAc transferase (OGT) in many cancers and reduced O-GlcNAcylation can block cancer growth. Here, we identify a novel mechanism whereby OGT regulates acetate-dependent acetyl-CoA and lipid production by regulating phosphorylation of acetyl-CoA synthetase 2 (ACSS2) by cyclin-dependent kinase 5 (CDK5). OGT is required and sufficient for GBM cell growth and regulates acetate conversion to acetyl-CoA and lipids. Elevating O-GlcNAcylation in GBM cells increases phosphorylation of ACSS2 on Ser-267 in a CDK5-dependent manner. Importantly, we show that ACSS2 Ser-267 phosphorylation regulates its stability by reducing polyubiquitination and degradation. ACSS2 Ser-267 is critical for OGT-mediated GBM growth as overexpression of ACSS2 Ser-267 phospho-mimetic rescues growth in vitro and in vivo. Importantly, we show that pharmacologically targeting OGT and CDK5 reduces GBM growth ex vivo. Thus, the OGT/CDK5/ACSS2 pathway may be a way to target altered metabolic dependencies in brain tumors.
Collapse
Affiliation(s)
- Lorela Ciraku
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA,These authors contributed equally: Lorela Ciraku, Zachary A. Bacigalupa
| | - Zachary A. Bacigalupa
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA,These authors contributed equally: Lorela Ciraku, Zachary A. Bacigalupa
| | - Jing Ju
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rebecca A. Moeller
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Giang Le Minh
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Rusia H. Lee
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Michael D. Smith
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Christina M. Ferrer
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Sophie Trefely
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Luke T. Izzo
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary T. Doan
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Wiktoria A. Gocal
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Luca D’Agostino
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Wenyin Shi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joshua G. Jackson
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Christos D. Katsetos
- Department of Pathology and Laboratory Medicine, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Kathryn E. Wellen
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nathaniel W. Snyder
- Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, Philadelphia, PA 19140, USA
| | - Mauricio J. Reginato
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA 19102, USA,Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA,Correspondence and requests for materials should be addressed to Mauricio J. Reginato.
| |
Collapse
|
6
|
Geng W, Wang J, Xie L, Song Y, Cao M, Shen J. p75 NTR Interacts with the Zinc Finger Protein Glis2 and Participates in Neuronal Apoptosis Following Intracerebral Hemorrhage. Neurotox Res 2022; 40:461-472. [PMID: 35192146 DOI: 10.1007/s12640-022-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 02/06/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022]
Abstract
Intracerebral hemorrhage (ICH) is a serious condition with a particularly high mortality rate. Gli-similar 2 (Glis2) has been reported to play an important role in the pathogenesis of ICH; however, its underlying mechanisms and biological significance remains unclear. In the present study, a specific interaction between Glis2 and p75NTR, a member of the tumor necrosis factor receptor superfamily, was identified both in vivo and in vitro. These experiments further indicated that p75NTR may interact with Glis2, and that the complex was transported into the nucleus, initially, inducing neuronal death. Furthermore, the mechanism of neuronal death was explored, and may have been mediated via the activation of the mitochondrial-dependent apoptotic pathway, and this was further investigated in the pathogenesis of ICH in rats in vivo. The study may provide evidences for regulating p75NTR-Glis2 complex as a potential reliable treatment for the secondary damage following ICH.
Collapse
Affiliation(s)
- Wenqing Geng
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China
| | - Jinglei Wang
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.,Department of Neurology, The People's Hospital of Hai'an, Nantong, Jiangsu, 226600, People's Republic of China
| | - Lili Xie
- Department of Neurology, The Third People's Hospital of Yancheng, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu, 224300, People's Republic of China
| | - Yan Song
- Department of Neurology, Nantong Hospital of Traditional Chinese Medicine, Nantong, Jiangsu, 226006, People's Republic of China
| | - Maohong Cao
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| | - Jiabing Shen
- Department of Neurology, Affiliated Hospital of Nantong University, 20#, Xisi RD, Nantong, Jiangsu, 226001, People's Republic of China.
| |
Collapse
|
7
|
Schultz B, Taday J, Menezes L, Cigerce A, Leite MC, Gonçalves CA. Calpain-Mediated Alterations in Astrocytes Before and During Amyloid Chaos in Alzheimer's Disease. J Alzheimers Dis 2021; 84:1415-1430. [PMID: 34719501 DOI: 10.3233/jad-215182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
One of the changes found in the brain in Alzheimer's disease (AD) is increased calpain, derived from calcium dysregulation, oxidative stress, and/or neuroinflammation, which are all assumed to be basic pillars in neurodegenerative diseases. The role of calpain in synaptic plasticity, neuronal death, and AD has been discussed in some reviews. However, astrocytic calpain changes sometimes appear to be secondary and consequent to neuronal damage in AD. Herein, we explore the possibility of calpain-mediated astroglial reactivity in AD, both preceding and during the amyloid phase. We discuss the types of brain calpains but focus the review on calpains 1 and 2 and some important targets in astrocytes. We address the signaling involved in controlling calpain expression, mainly involving p38/mitogen-activated protein kinase and calcineurin, as well as how calpain regulates the expression of proteins involved in astroglial reactivity through calcineurin and cyclin-dependent kinase 5. Throughout the text, we have tried to provide evidence of the connection between the alterations caused by calpain and the metabolic changes associated with AD. In addition, we discuss the possibility that calpain mediates amyloid-β clearance in astrocytes, as opposed to amyloid-β accumulation in neurons.
Collapse
Affiliation(s)
- Bruna Schultz
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Jéssica Taday
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Leonardo Menezes
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Anderson Cigerce
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Marina C Leite
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos-Alberto Gonçalves
- Postgraduate Program in Biochemistry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| |
Collapse
|
8
|
Wu J, Tan Z, Li H, Lin M, Jiang Y, Liang L, Ma Q, Gou J, Ning L, Li X, Guan F. Melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O-GlcNAcylation of cyclin-dependent-like kinase 5. J Pineal Res 2021; 71:e12765. [PMID: 34487576 DOI: 10.1111/jpi.12765] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 11/29/2022]
Abstract
Melatonin helps to maintain circadian rhythm, exerts anticancer activity, and plays key roles in regulation of glucose homeostasis and energy metabolism. Glycosylation, a form of metabolic flux from glucose or other monosaccharides, is a common post-translational modification. Dysregulated glycosylation, particularly O-GlcNAcylation, is often a biomarker of cancer cells. In this study, elevated O-GlcNAc level in bladder cancer was inhibited by melatonin treatment. Melatonin treatment inhibited proliferation and migration and enhanced apoptosis of bladder cancer cells. Proteomic analysis revealed reduction in cyclin-dependent-like kinase 5 (CDK5) expression by melatonin. O-GlcNAc modification determined the conformation of critical T-loop domain on CDK5 and further influenced the CDK5 stability. The mechanism whereby melatonin suppressed O-GlcNAc level was based on decreased glucose uptake and metabolic flux from glucose to UDP-GlcNAc, and consequent reduction in CDK5 expression. Melatonin treatment, inhibition of O-GlcNAcylation by OSMI-1, or mutation of key O-GlcNAc site strongly suppressed in vivo tumor growth. Our findings indicate that melatonin reduces proliferation and promotes apoptosis of bladder cancer cells by suppressing O-GlcNAcylation of CDK5.
Collapse
Affiliation(s)
- Jinpeng Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Zengqi Tan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Hongjiao Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Meixuan Lin
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | | | - Liang Liang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qilong Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Junjie Gou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| | - Lulu Ning
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, China
| | - Xiang Li
- Institute of Hematology, School of Medicine, Northwest University, Xi'an, China
| | - Feng Guan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Provincial Key Laboratory of Biotechnology, College of Life Sciences, Northwest University, Xi'an, China
| |
Collapse
|
9
|
Ye L, Fang YS, Li XX, Gao Y, Liu SS, Chen Q, Wu Q, Cheng HW, Du WD. A simple lectin-based biochip might display the potential clinical value of glycomics in patients with spontaneous intracerebral hemorrhage. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:544. [PMID: 33987242 DOI: 10.21037/atm-20-7315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Intracerebral hemorrhage (ICH) is a cerebrovascular disease with extremely high disability and mortality rates. Glycans play critical roles in biological processes. However, whether glycans can serve as potential biomarkers for determining clinical diagnosis and prognosis in ICH remains determined. Methods In this study, we established a lectin-biochip to measure serum glycans levels in ICH patients (n=48) and healthy controls (n=16). An enzyme-linked immunosorbent assay (ELISA) was carried out to determine serum levels of IL-10 and TNF-α in the patients. Correlation analyses of the serum glycan and cytokine levels and the clinicopathological parameters of patients were performed. Results The biochip-based data revealed that the serum levels of α-Man/α-Glc (ConA), Galβ3GalNAc (PNA), GalNAc (VVA), Fucα6GlcNAc (AAL), α-Fuc (LTL), and Galβ3GalNAc-Ser/Thr (AIL) significantly increased in the super-acute phase of ICH in comparison with healthy controls. Clinicopathological analysis indicated the serum levels of ConA, VVA, and LTL had significant associations with the National Institute of Health Stroke Scale (NIHSS), and serum VVA levels had a significant association with the Mini-Mental State Examination (MMSE) at day 90 after ICH. Correlation coefficient analysis revealed significant correlations between TNF-α and ConA (P<0.001) as well as between IL-10 and ConA (P<0.001), PNA (P=0.02), VVA (P<0.001), and MAL (P=0.04), respectively. Conclusions We established a proof-of-concept platform for detecting serum glycomics and highlighted their potential value in diagnosing and predicting ICH patients' outcomes.
Collapse
Affiliation(s)
- Lei Ye
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yong-Sheng Fang
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiao-Xue Li
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Yi Gao
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Sheng-Sheng Liu
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Chen
- Department of Pathology, Anhui Medical University, Hefei, China
| | - Qiang Wu
- Department of Pathology, the Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Hong-Wei Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Dong Du
- Department of Pathology, Anhui Medical University, Hefei, China
| |
Collapse
|
10
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
11
|
Abstract
O-Linked N-acetyl glucosamine (O-GlcNAc) is a protein modification found on thousands of nuclear, cytosolic, and mitochondrial proteins. Many O-GlcNAc sites occur in proximity to protein sites that are likewise modified by phosphorylation. While several studies have uncovered crosstalk between these two signaling modifications on individual proteins and pathways, an understanding of the role of O-GlcNAc in regulating kinases, the enzymes that install the phosphate modification, is still emerging. Here we review recent methods to profile the O-GlcNAc modification on a global scale that have revealed more than 100 kinases are modified by O-GlcNAc and highlight existing studies about regulation of these kinases by O-GlcNAc. Continuing efforts to profile the O-GlcNAc proteome and understand the role of O-GlcNAc on kinases will reveal new mechanisms of regulation and potential avenues for manipulation of the signaling mechanisms at the intersection of O-GlcNAc and phosphorylation.
Collapse
Affiliation(s)
- Paul A. Schwein
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Christina M. Woo
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
12
|
Lu TT, Wan C, Yang W, Cai Z. Role of Cdk5 in Amyloid-beta Pathology of Alzheimer’s Disease. Curr Alzheimer Res 2020; 16:1206-1215. [PMID: 31820699 DOI: 10.2174/1567205016666191210094435] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/14/2022]
Abstract
Alzheimer’s Disease (AD) is a progressive neurodegenerative disease with irreversible cognitive
impairment. So far, successful treatment and prevention for this disease are deficient in spite of delaying
the progression of cognitive impairment and dementia. Cyclin dependent kinase 5 (Cdk5), a
unique member of the cyclin-dependent kinase family, is involved in AD pathogenesis and may be a
pathophysiological mediator that links the major pathological features of AD. Cdk5 dysregulation interferes
with the proteolytic processing of Amyloid-beta Protein Precursor (APP) and modulates amyloidbeta
(Aβ) by affecting three enzymes called α-, β- and γ-secretase, which are critical for the hydrolysis
of APP. Given that the accumulation and deposition of Aβ derived from APP are a common hinge point
in the numerous pathogenic hypotheses of AD, figuring out that influence of specific mechanisms of
Cdk5 on Aβ pathology will deepen our understanding of AD.
Collapse
Affiliation(s)
- Tao-Tao Lu
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Chengqun Wan
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| | - Wenming Yang
- Departmentof Neurology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031 Anhui Province, China
| | - Zhiyou Cai
- Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, 400013, Chongqing, China
| |
Collapse
|
13
|
Lu X, Zhang HY, He ZY. MicroRNA-181c provides neuroprotection in an intracerebral hemorrhage model. Neural Regen Res 2020; 15:1274-1282. [PMID: 31960813 PMCID: PMC7047781 DOI: 10.4103/1673-5374.272612] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Apoptosis is an important factor during the early stage of intracerebral hemorrhage. MiR-181c plays a key regulatory role in apoptosis. However, whether miR-181c is involved in apoptosis of prophase cells after intracerebral hemorrhage remains unclear. Therefore, in vitro and in vivo experiments were conducted to test this hypothesis. In vivo experiments: collagenase type VII was injected into the basal ganglia of adult Sprague-Dawley rats to establish an intracerebral hemorrhage model. MiR-181c mimic or inhibitor was injected in situ 4 hours after intracerebral hemorrhage. Neurological functional defects (neurological severity scores) were assessed 1, 7, and 14 days after model establishment. Terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick-end labeling and western blot assay were conducted 14 days after model establishment. In vitro experiments: PC12 cells were cultured under oxygen-glucose deprivation, and hemins were added to simulate intracerebral hemorrhage in vitro. MiR-181c mimic or inhibitor was added to regulate miR-181c expression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, luciferase reporter system, and western blot assay were performed. Experimental results revealed differences in miR-181c expression in brain tissues of both patients and rats with cerebral hemorrhage. In addition, in vitro experiments found that miR-181c overexpression could upregulate the Bcl-2/Bax ratio to inhibit apoptosis, while inhibition of miR-181c expression could reduce the Bcl-2/Bax ratio and aggravate apoptosis of cells. Regulation of apoptosis occurred through the phosphoinositide 3 kinase (PI3K)/Akt pathway by targeting of phosphatase and tensin homolog deleted on chromosome ten (PTEN). Higher miR-181c overexpression correlated with lower neurological severity scores, indicating better recovery of neurological function. In conclusion, miR-181c affects the prognosis of intracerebral hemorrhage by regulating apoptosis, and these effects might be directly mediated and regulated by targeting of the PTEN\PI3K/Akt pathway and Bcl-2/Bax ratio. Furthermore, these results indicated that miR-181c played a neuroprotective role in intracerebral hemorrhage by regulating apoptosis of nerve cells, thus providing a potential target for the prevention and treatment of intracerebral hemorrhage. Testing of human serum was authorized by the Ethics Committee of China Medical University (No. 2012-38-1) on February 20, 2012. The protocol was registered with the Chinese Clinical Trial Registry (Registration No. ChiCTR-COC-17013559). The animal study was approved by the Institutional Animal Care and Use Committee of China Medical University (approval No. 2017008) on March 8, 2017.
Collapse
Affiliation(s)
- Xi Lu
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Hui-Yuan Zhang
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| | - Zhi-Yi He
- First Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, China
| |
Collapse
|
14
|
Abstract
In the early 1980s, while using purified glycosyltransferases to probe glycan structures on surfaces of living cells in the murine immune system, we discovered a novel form of serine/threonine protein glycosylation (O-linked β-GlcNAc; O-GlcNAc) that occurs on thousands of proteins within the nucleus, cytoplasm, and mitochondria. Prior to this discovery, it was dogma that protein glycosylation was restricted to the luminal compartments of the secretory pathway and on extracellular domains of membrane and secretory proteins. Work in the last 3 decades from several laboratories has shown that O-GlcNAc cycling serves as a nutrient sensor to regulate signaling, transcription, mitochondrial activity, and cytoskeletal functions. O-GlcNAc also has extensive cross-talk with phosphorylation, not only at the same or proximal sites on polypeptides, but also by regulating each other's enzymes that catalyze cycling of the modifications. O-GlcNAc is generally not elongated or modified. It cycles on and off polypeptides in a time scale similar to phosphorylation, and both the enzyme that adds O-GlcNAc, the O-GlcNAc transferase (OGT), and the enzyme that removes O-GlcNAc, O-GlcNAcase (OGA), are highly conserved from C. elegans to humans. Both O-GlcNAc cycling enzymes are essential in mammals and plants. Due to O-GlcNAc's fundamental roles as a nutrient and stress sensor, it plays an important role in the etiologies of chronic diseases of aging, including diabetes, cancer, and neurodegenerative disease. This review will present an overview of our current understanding of O-GlcNAc's regulation, functions, and roles in chronic diseases of aging.
Collapse
Affiliation(s)
- Gerald W Hart
- From the Complex Carbohydrate Research Center and Biochemistry and Molecular Biology Department, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
15
|
Parween S, Varghese DS, Ardah MT, Prabakaran AD, Mensah-Brown E, Emerald BS, Ansari SA. Higher O-GlcNAc Levels Are Associated with Defects in Progenitor Proliferation and Premature Neuronal Differentiation during in-Vitro Human Embryonic Cortical Neurogenesis. Front Cell Neurosci 2017; 11:415. [PMID: 29311838 PMCID: PMC5742625 DOI: 10.3389/fncel.2017.00415] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 12/12/2017] [Indexed: 11/13/2022] Open
Abstract
The nutrient responsive O-GlcNAcylation is a dynamic post-translational protein modification found on several nucleocytoplasmic proteins. Previous studies have suggested that hyperglycemia induces the levels of total O-GlcNAcylation inside the cells. Hyperglycemia mediated increase in protein O-GlcNAcylation has been shown to be responsible for various pathologies including insulin resistance and Alzheimer's disease. Since maternal hyperglycemia during pregnancy is associated with adverse neurodevelopmental outcomes in the offspring, it is intriguing to identify the effect of increased protein O-GlcNAcylation on embryonic neurogenesis. Herein using human embryonic stem cells (hESCs) as model, we show that increased levels of total O-GlcNAc is associated with decreased neural progenitor proliferation and premature differentiation of cortical neurons, reduced AKT phosphorylation, increased apoptosis and defects in the expression of various regulators of embryonic corticogenesis. As defects in proliferation and differentiation during neurodevelopment are common features of various neurodevelopmental disorders, increased O-GlcNAcylation could be one mechanism responsible for defective neurodevelopmental outcomes in metabolically compromised pregnancies such as diabetes.
Collapse
Affiliation(s)
- Shama Parween
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Divya S Varghese
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Mustafa T Ardah
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ashok D Prabakaran
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Eric Mensah-Brown
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Suraiya A Ansari
- Department of Biochemistry, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
16
|
Akan I, Olivier-Van Stichelen S, Bond MR, Hanover JA. Nutrient-driven O-GlcNAc in proteostasis and neurodegeneration. J Neurochem 2017; 144:7-34. [PMID: 29049853 DOI: 10.1111/jnc.14242] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/28/2017] [Accepted: 10/11/2017] [Indexed: 12/14/2022]
Abstract
Proteostasis is essential in the mammalian brain where post-mitotic cells must function for decades to maintain synaptic contacts and memory. The brain is dependent on glucose and other metabolites for proper function and is spared from metabolic deficits even during starvation. In this review, we outline how the nutrient-sensitive nucleocytoplasmic post-translational modification O-linked N-acetylglucosamine (O-GlcNAc) regulates protein homeostasis. The O-GlcNAc modification is highly abundant in the mammalian brain and has been linked to proteopathies, including neurodegenerative diseases such as Alzheimer's, Parkinson's, and Huntington's. C. elegans, Drosophila, and mouse models harboring O-GlcNAc transferase- and O-GlcNAcase-knockout alleles have helped define the role O-GlcNAc plays in development as well as age-associated neurodegenerative disease. These enzymes add and remove the single monosaccharide from protein serine and threonine residues, respectively. Blocking O-GlcNAc cycling is detrimental to mammalian brain development and interferes with neurogenesis, neural migration, and proteostasis. Findings in C. elegans and Drosophila model systems indicate that the dynamic turnover of O-GlcNAc is critical for maintaining levels of key transcriptional regulators responsible for neurodevelopment cell fate decisions. In addition, pathways of autophagy and proteasomal degradation depend on a transcriptional network that is also reliant on O-GlcNAc cycling. Like the quality control system in the endoplasmic reticulum which uses a 'mannose timer' to monitor protein folding, we propose that cytoplasmic proteostasis relies on an 'O-GlcNAc timer' to help regulate the lifetime and fate of nuclear and cytoplasmic proteins. O-GlcNAc-dependent developmental alterations impact metabolism and growth of the developing mouse embryo and persist into adulthood. Brain-selective knockout mouse models will be an important tool for understanding the role of O-GlcNAc in the physiology of the brain and its susceptibility to neurodegenerative injury.
Collapse
Affiliation(s)
- Ilhan Akan
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Michelle R Bond
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| | - John A Hanover
- Laboratory of Cell and Molecular Biology, NIDDK, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
17
|
Ma X, Li H, He Y, Hao J. The emerging link between O-GlcNAcylation and neurological disorders. Cell Mol Life Sci 2017; 74:3667-3686. [PMID: 28534084 PMCID: PMC11107615 DOI: 10.1007/s00018-017-2542-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Revised: 04/23/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
O-linked β-N-acetylglucosaminylation (O-GlcNAcylation) is involved in the regulation of many cellular cascades and neurological diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), and stroke. In the brain, the expression of O-GlcNAcylation is notably heightened, as is that of O-linked N-acetylglucosaminyltransferase (OGT) and β-N-acetylglucosaminidase (OGA), the presence of which is prominent in many regions of neurological importance. Most importantly, O-GlcNAcylation is believed to contribute to the normal functioning of neurons; conversely, its dysregulation participates in the pathogenesis of neurological disorders. In neurodegenerative diseases, O-GlcNAcylation of the brain's key proteins, such as tau and amyloid-β, interacts with their phosphorylation, thereby triggering the formation of neurofibrillary tangles and amyloid plaques. An increase of O-GlcNAcylation by pharmacological intervention prevents neuronal loss. Additionally, O-GlcNAcylation is stress sensitive, and its elevation is cytoprotective. Increased O-GlcNAcylation ameliorated brain damage in victims of both trauma-hemorrhage and stroke. In this review, we summarize the current understanding of O-GlcNAcylation's physiological and pathological roles in the nervous system and provide a foundation for development of a therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Xiaofeng Ma
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - He Li
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Yating He
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Junwei Hao
- Department of Neurology and Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
18
|
Loss of O-GlcNAc glycosylation in forebrain excitatory neurons induces neurodegeneration. Proc Natl Acad Sci U S A 2016; 113:15120-15125. [PMID: 27956640 DOI: 10.1073/pnas.1606899113] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
O-GlcNAc glycosylation (or O-GlcNAcylation) is a dynamic, inducible posttranslational modification found on proteins associated with neurodegenerative diseases such as α-synuclein, amyloid precursor protein, and tau. Deletion of the O-GlcNAc transferase (ogt) gene responsible for the modification causes early postnatal lethality in mice, complicating efforts to study O-GlcNAcylation in mature neurons and to understand its roles in disease. Here, we report that forebrain-specific loss of OGT in adult mice leads to progressive neurodegeneration, including widespread neuronal cell death, neuroinflammation, increased production of hyperphosphorylated tau and amyloidogenic Aβ-peptides, and memory deficits. Furthermore, we show that human cortical brain tissue from Alzheimer's disease patients has significantly reduced levels of OGT protein expression compared with cortical tissue from control individuals. Together, these studies indicate that O-GlcNAcylation regulates pathways critical for the maintenance of neuronal health and suggest that dysfunctional O-GlcNAc signaling may be an important contributor to neurodegenerative diseases.
Collapse
|