1
|
Poszewiecka B, Gogolewski K, Karolak JA, Stankiewicz P, Gambin A. PhaseDancer: a novel targeted assembler of segmental duplications unravels the complexity of the human chromosome 2 fusion going from 48 to 46 chromosomes in hominin evolution. Genome Biol 2023; 24:205. [PMID: 37697406 PMCID: PMC10496407 DOI: 10.1186/s13059-023-03022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 07/25/2023] [Indexed: 09/13/2023] Open
Abstract
Resolving complex genomic regions rich in segmental duplications (SDs) is challenging due to the high error rate of long-read sequencing. Here, we describe a targeted approach with a novel genome assembler PhaseDancer that extends SD-rich regions of interest iteratively. We validate its robustness and efficiency using a golden-standard set of human BAC clones and in silico-generated SDs with predefined evolutionary scenarios. PhaseDancer enables extension of the incomplete complex SD-rich subtelomeric regions of Great Ape chromosomes orthologous to the human chromosome 2 (HSA2) fusion site, informing a model of HSA2 formation and unravelling the evolution of human and Great Ape genomes.
Collapse
Affiliation(s)
- Barbara Poszewiecka
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Krzysztof Gogolewski
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| | - Justyna A. Karolak
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
- Chair and Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-806 Poznan, Poland
| | - Paweł Stankiewicz
- Department of Molecular and Human Genetics, Baylor College of Medicine, 1 Baylor Plaza, 77030 Houston, TX USA
| | - Anna Gambin
- Faculty of Mathematics, Informatics, and Mechanics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland
| |
Collapse
|
2
|
Sangpakdee W, Tanomtong A, Chaveerach A, Pinthong K, Trifonov V, Loth K, Hensel C, Liehr T, Weise A, Fan X. Molecular Cytogenetic Analysis of One African and Five Asian Macaque Species Reveals Identical Karyotypes as in Mandrill. Curr Genomics 2018; 19:207-215. [PMID: 29606908 PMCID: PMC5850509 DOI: 10.2174/1389202918666170721115047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 11/17/2016] [Accepted: 01/20/2017] [Indexed: 11/22/2022] Open
Abstract
Background The question how evolution and speciation work is one of the major interests of biology. Especially, genetic including karyotypic evolution within primates is of special interest due to the close phylogenetic position of Macaca and Homo sapiens and the role as in vivo models in medical research, neuroscience, behavior, pharmacology, reproduction and Acquired Immune Deficiency Syndrome (AIDS). Materials & Methods Karyotypes of five macaque species from South East Asia and of one macaque species as well as mandrill from Africa were analyzed by high resolution molecular cytogenetics to obtain new insights into karyotypic evolution of old world monkeys. Molecular cytogenetics applying human probes and probe sets was applied in chromosomes of Macaca arctoides, M. fascicularis, M. nemestrina, M. assamensis, M. sylvanus, M. mulatta and Mandrillus sphinx. Established two- to multicolor-fluorescence in situ hybridization (FISH) approaches were applied. Locus-specific probes, whole and partial chromosome paint probes were hybridized. Especially the FISH-banding approach multicolor-banding (MCB) as well as probes oriented towards heterochromatin turned out to be highly efficient for interspecies comparison. Conclusion Karyotypes of all seven studied species could be characterized in detail. Surprisingly, no evolutionary conserved differences were found among macaques, including mandrill. Between the seven here studied and phenotypically so different species we expected several via FISH detectable karyoypic and submicroscopic changes and were surprised to find none of them on a molecular cytogenetic level. Spatial separation, may explain the speciation and different evolution for some of them, like African M. sylvanus, Mandrillus sphinx and the South Asian macaques. However, for the partially or completely overlapping habitats of the five studied South Asian macaques the species separation process can also not be deduced to karyotypic separation.
Collapse
Affiliation(s)
- Wiwat Sangpakdee
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Alongkoad Tanomtong
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Arunrat Chaveerach
- Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand
| | - Krit Pinthong
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Department of Biology, Faculty of Science, Khon Kaen University, 123 Moo 16 Mittapap Rd., Muang District, Khon Kaen40002, Thailand.,Faculty of Science and Technology, Surindra Rajabhat University, 186 Moo 1, Maung District, Surin 32000, Thailand
| | - Vladimir Trifonov
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany.,Institute of Molecular and Cellular Biology, Lavrentev Str. 8/2, Novosibirsk630090, Russian Federation
| | - Kristina Loth
- Serengeti-Park Hodenhagen, Am Safaripark 1, D-29693 Hodenhagen, Germany
| | | | - Thomas Liehr
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Anja Weise
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| | - Xiaobo Fan
- Jena University Hospital, Friedrich Schiller University, Institute of Human Genetics, Am Klinikum 1, D-07747Jena, Germany
| |
Collapse
|
3
|
Chiatante G, Giannuzzi G, Calabrese FM, Eichler EE, Ventura M. Centromere Destiny in Dicentric Chromosomes: New Insights from the Evolution of Human Chromosome 2 Ancestral Centromeric Region. Mol Biol Evol 2017; 34:1669-1681. [PMID: 28333343 DOI: 10.1093/molbev/msx108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Dicentric chromosomes are products of genomic rearrangements that place two centromeres on the same chromosome. Due to the presence of two primary constrictions, they are inherently unstable and overcome their instability by epigenetically inactivating and/or deleting one of the two centromeres, thus resulting in functionally monocentric chromosomes that segregate normally during cell division. Our understanding to date of dicentric chromosome formation, behavior and fate has been largely inferred from observational studies in plants and humans as well as artificially produced de novo dicentrics in yeast and in human cells. We investigate the most recent product of a chromosome fusion event fixed in the human lineage, human chromosome 2, whose stability was acquired by the suppression of one centromere, resulting in a unique difference in chromosome number between humans (46 chromosomes) and our most closely related ape relatives (48 chromosomes). Using molecular cytogenetics, sequencing, and comparative sequence data, we deeply characterize the relicts of the chromosome 2q ancestral centromere and its flanking regions, gaining insight into the ancestral organization that can be easily broadened to all acrocentric chromosome centromeres. Moreover, our analyses offered the opportunity to trace the evolutionary history of rDNA and satellite III sequences among great apes, thus suggesting a new hypothesis for the preferential inactivation of some human centromeres, including IIq. Our results suggest two possible centromere inactivation models to explain the evolutionarily stabilization of human chromosome 2 over the last 5-6 million years. Our results strongly favor centromere excision through a one-step process.
Collapse
Affiliation(s)
- Giorgia Chiatante
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy.,Department of Biology, Anthropology Laboratories University of Florence, Florence, Italy
| | - Giuliana Giannuzzi
- Center for Integrative Genomics, University of Lausanne, Lausanne, Switzerland
| | | | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA.,Howard Hughes Medical Institute, University of Washington, Seattle, WA
| | - Mario Ventura
- Department of Biology, University of Bari "Aldo Moro", Bari, Italy
| |
Collapse
|
4
|
Abstract
Whole-genome assemblies of 19 placental mammals and two outgroup species were used to reconstruct the order and orientation of syntenic fragments in chromosomes of the eutherian ancestor and six other descendant ancestors leading to human. For ancestral chromosome reconstructions, we developed an algorithm (DESCHRAMBLER) that probabilistically determines the adjacencies of syntenic fragments using chromosome-scale and fragmented genome assemblies. The reconstructed chromosomes of the eutherian, boreoeutherian, and euarchontoglires ancestor each included >80% of the entire length of the human genome, whereas reconstructed chromosomes of the most recent common ancestor of simians, catarrhini, great apes, and humans and chimpanzees included >90% of human genome sequence. These high-coverage reconstructions permitted reliable identification of chromosomal rearrangements over ∼105 My of eutherian evolution. Orangutan was found to have eight chromosomes that were completely conserved in homologous sequence order and orientation with the eutherian ancestor, the largest number for any species. Ruminant artiodactyls had the highest frequency of intrachromosomal rearrangements, and interchromosomal rearrangements dominated in murid rodents. A total of 162 chromosomal breakpoints in evolution of the eutherian ancestral genome to the human genome were identified; however, the rate of rearrangements was significantly lower (0.80/My) during the first ∼60 My of eutherian evolution, then increased to greater than 2.0/My along the five primate lineages studied. Our results significantly expand knowledge of eutherian genome evolution and will facilitate greater understanding of the role of chromosome rearrangements in adaptation, speciation, and the etiology of inherited and spontaneously occurring diseases.
Collapse
|
5
|
Gradnigo JS, Majumdar A, Norgren RB, Moriyama EN. Advantages of an Improved Rhesus Macaque Genome for Evolutionary Analyses. PLoS One 2016; 11:e0167376. [PMID: 27911958 PMCID: PMC5135103 DOI: 10.1371/journal.pone.0167376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 11/14/2016] [Indexed: 01/12/2023] Open
Abstract
The rhesus macaque (Macaca mulatta) is widely used in molecular evolutionary analyses, particularly to identify genes under adaptive or unique evolution in the human lineage. For such studies, it is necessary to align nucleotide sequences of homologous protein-coding genes among multiple species. The validity of these analyses is dependent on high quality genomic data. However, for most mammalian species (other than humans and mice), only draft genomes are available. There has been concern that some results obtained from evolutionary analyses using draft genomes may not be correct. The rhesus macaque provides a unique opportunity to determine whether an improved genome (MacaM) yields better results than a draft genome (rheMac2) for evolutionary studies. We compared protein-coding genes annotated in the rheMac2 and MacaM genomes with their human orthologs. We found many genes annotated in rheMac2 had apparently spurious sequences not present in genes derived from MacaM. The rheMac2 annotations also appeared to inflate a frequently used evolutionary index, ω (the ratio of nonsynonymous to synonymous substitution rates). Genes with these spurious sequences must be filtered out from evolutionary analyses to obtain correct results. With the MacaM genome, improved sequence information means many more genes can be examined for indications of selection. These results indicate how upgrading genomes from draft status to a higher level of quality can improve interpretation of evolutionary patterns.
Collapse
Affiliation(s)
- Julien S. Gradnigo
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Abhishek Majumdar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Robert B. Norgren
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska, United States of America
| | - Etsuko N. Moriyama
- School of Biological Sciences and Center for Plant Science Innovation, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
- * E-mail:
| |
Collapse
|
6
|
Ng J, Fass JN, Durbin-Johnson B, Smith DG, Kanthaswamy S. Identifying rhesus macaque gene orthologs using heterospecific human CNV probes. GENOMICS DATA 2015; 6:202-7. [PMID: 26697375 PMCID: PMC4664757 DOI: 10.1016/j.gdata.2015.09.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 09/12/2015] [Indexed: 12/14/2022]
Abstract
We used the Affymetrix(®) Genome-Wide Human SNP Array 6.0 to identify heterospecific markers and compare copy number and structural genomic variation between humans and rhesus macaques. Over 200,000 human copy number variation (CNV) probes were mapped to a Chinese and an Indian rhesus macaque sample. Observed genomic rearrangements and synteny were in agreement with the results of a previously published genomic comparison between humans and rhesus macaques. Comparisons between each of the two rhesus macaques and humans yielded 206 regions with copy numbers that differed by at least two fold in the Indian rhesus macaque and human, 32 in the Chinese rhesus macaque and human, and 147 in both rhesus macaques. The detailed genomic map and preliminary CNV data are useful for better understanding genetic variation in rhesus macaques, identifying derived changes in human CNVs that may have evolved by selection, and determining the suitability of rhesus macaques as human models for particular biomedical studies.
Collapse
Affiliation(s)
- Jillian Ng
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
| | - Joseph N. Fass
- Genome Center Bioinformatics Core, University of California, Davis, CA, USA
| | | | - David Glenn Smith
- Molecular Anthropology Laboratory, Department of Anthropology, University of California, Davis, CA, USA
- California National Primate Research Center, University of California, Davis, CA, USA
| | - Sree Kanthaswamy
- California National Primate Research Center, University of California, Davis, CA, USA
- School of Mathematics and Natural Sciences, Arizona State University (ASU) at the West Campus, Glendale, AZ, USA
| |
Collapse
|
7
|
Zimin AV, Cornish AS, Maudhoo MD, Gibbs RM, Zhang X, Pandey S, Meehan DT, Wipfler K, Bosinger SE, Johnson ZP, Tharp GK, Marçais G, Roberts M, Ferguson B, Fox HS, Treangen T, Salzberg SL, Yorke JA, Norgren RB. A new rhesus macaque assembly and annotation for next-generation sequencing analyses. Biol Direct 2014; 9:20. [PMID: 25319552 PMCID: PMC4214606 DOI: 10.1186/1745-6150-9-20] [Citation(s) in RCA: 141] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022] Open
Abstract
Background The rhesus macaque (Macaca mulatta) is a key species for advancing biomedical research. Like all draft mammalian genomes, the draft rhesus assembly (rheMac2) has gaps, sequencing errors and misassemblies that have prevented automated annotation pipelines from functioning correctly. Another rhesus macaque assembly, CR_1.0, is also available but is substantially more fragmented than rheMac2 with smaller contigs and scaffolds. Annotations for these two assemblies are limited in completeness and accuracy. High quality assembly and annotation files are required for a wide range of studies including expression, genetic and evolutionary analyses. Results We report a new de novo assembly of the rhesus macaque genome (MacaM) that incorporates both the original Sanger sequences used to assemble rheMac2 and new Illumina sequences from the same animal. MacaM has a weighted average (N50) contig size of 64 kilobases, more than twice the size of the rheMac2 assembly and almost five times the size of the CR_1.0 assembly. The MacaM chromosome assembly incorporates information from previously unutilized mapping data and preliminary annotation of scaffolds. Independent assessment of the assemblies using Ion Torrent read alignments indicates that MacaM is more complete and accurate than rheMac2 and CR_1.0. We assembled messenger RNA sequences from several rhesus tissues into transcripts which allowed us to identify a total of 11,712 complete proteins representing 9,524 distinct genes. Using a combination of our assembled rhesus macaque transcripts and human transcripts, we annotated 18,757 transcripts and 16,050 genes with complete coding sequences in the MacaM assembly. Further, we demonstrate that the new annotations provide greatly improved accuracy as compared to the current annotations of rheMac2. Finally, we show that the MacaM genome provides an accurate resource for alignment of reads produced by RNA sequence expression studies. Conclusions The MacaM assembly and annotation files provide a substantially more complete and accurate representation of the rhesus macaque genome than rheMac2 or CR_1.0 and will serve as an important resource for investigators conducting next-generation sequencing studies with nonhuman primates. Reviewers This article was reviewed by Dr. Lutz Walter, Dr. Soojin Yi and Dr. Kateryna Makova.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Robert B Norgren
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, Nebraska 68198, USA.
| |
Collapse
|
8
|
Giannuzzi G, Pazienza M, Huddleston J, Antonacci F, Malig M, Vives L, Eichler EE, Ventura M. Hominoid fission of chromosome 14/15 and the role of segmental duplications. Genome Res 2013; 23:1763-73. [PMID: 24077392 PMCID: PMC3814877 DOI: 10.1101/gr.156240.113] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin–heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14–qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in “stitching” together rearrangement breakpoints.
Collapse
Affiliation(s)
- Giuliana Giannuzzi
- Dipartimento di Biologia, Università degli Studi di Bari "Aldo Moro," Bari 70125, Italy
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
The study of nonhuman primates (NHP) is key to understanding human evolution, in addition to being an important model for biomedical research. NHPs are especially important for translational medicine. There are now exciting opportunities to greatly increase the utility of these models by incorporating Next Generation (NextGen) sequencing into study design. Unfortunately, the draft status of nonhuman genomes greatly constrains what can currently be accomplished with available technology. Although all genomes contain errors, draft assemblies and annotations contain so many mistakes that they make currently available nonhuman primate genomes misleading to investigators conducting evolutionary studies; and these genomes are of insufficient quality to serve as references for NextGen studies. Fortunately, NextGen sequencing can be used in the production of greatly improved genomes. Existing Sanger sequences can be supplemented with NextGen whole genome, and exomic genomic sequences to create new, more complete and correct assemblies. Additional physical mapping, and an incorporation of information about gene structure, can be used to improve assignment of scaffolds to chromosomes. In addition, mRNA-sequence data can be used to economically acquire transcriptome information, which can be used for annotation. Some highly polymorphic and complex regions, for example MHC class I and immunoglobulin loci, will require extra effort to properly assemble and annotate. However, for the vast majority of genes, a modest investment in money, and a somewhat greater investment in time, can greatly improve assemblies and annotations sufficient to produce true, reference grade nonhuman primate genomes. Such resources can reasonably be expected to transform nonhuman primate research.
Collapse
Affiliation(s)
- Robert B. Norgren
- Address correspondence and reprint requests to Dr. Robert B. Norgren, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, 985805 Nebraska Medical Center, Omaha, NE 68198 or email
| |
Collapse
|
10
|
Kanthaswamy S, Ng J, Ross CT, Trask JS, Smith DG, Buffalo VS, Fass JN, Lin D. Identifying human-rhesus macaque gene orthologs using heterospecific SNP probes. Genomics 2012; 101:30-7. [PMID: 22982528 DOI: 10.1016/j.ygeno.2012.09.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Revised: 07/27/2012] [Accepted: 09/04/2012] [Indexed: 02/07/2023]
Abstract
We genotyped a Chinese and an Indian-origin rhesus macaque using the Affymetrix Genome-Wide Human SNP Array 6.0 and cataloged 85,473 uniquely mapping heterospecific SNPs. These SNPs were assigned to rhesus chromosomes according to their probe sequence alignments as displayed in the human and rhesus reference sequences. The conserved gene order (synteny) revealed by heterospecific SNP maps is in concordance with that of the published human and rhesus macaque genomes. Using these SNPs' original human rs numbers, we identified 12,328 genes annotated in humans that are associated with these SNPs, 3674 of which were found in at least one of the two rhesus macaques studied. Due to their density, the heterospecific SNPs allow fine-grained comparisons, including approximate boundaries of intra- and extra-chromosomal rearrangements involving gene orthologs, which can be used to distinguish rhesus macaque chromosomes from human chromosomes.
Collapse
Affiliation(s)
- Sree Kanthaswamy
- Molecular Anthropology Lab., Dept. of Anthropology, UC Davis, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Stanyon R, Rocchi M, Bigoni F, Archidiacono N. Evolutionary molecular cytogenetics of catarrhine primates: past, present and future. Cytogenet Genome Res 2012; 137:273-84. [PMID: 22710640 DOI: 10.1159/000339381] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The catarrhine primates were the first group of species studied with comparative molecular cytogenetics. Many of the fundamental techniques and principles of analysis were initially applied to comparisons in these primates, including interspecific chromosome painting, reciprocal chromosome painting and the extensive use of cloned DNA probes for evolutionary analysis. The definition and importance of chromosome syntenies and associations for a correct cladistics analysis of phylogenomic relationships were first applied to catarrhines. These early chromosome painting studies vividly illustrated a striking conservation of the genome between humans and macaques. Contemporarily, it also revealed profound differences between humans and gibbons, a group of species more closely related to humans, making it clear that chromosome evolution did not follow a molecular clock. Chromosome painting has now been applied to more that 60 primate species and the translocation history has been mapped onto the major taxonomic divisions in the tree of primate evolution. In situ hybridization of cloned DNA probes, primarily BAC-FISH, also made it possible to more precisely map breakpoints with spanning and flanking BACs. These studies established marker order and disclosed intrachromosomal rearrangements. When applied comparatively to a range of primate species, they led to the discovery of evolutionary new centromeres as an important new category of chromosome evolution. BAC-FISH studies are intimately connected to genome sequencing, and probes can usually be assigned to a precise location in the genome assembly. This connection ties molecular cytogenetics securely to genome sequencing, assuring that molecular cytogenetics will continue to have a productive future in the multidisciplinary science of phylogenomics.
Collapse
Affiliation(s)
- R Stanyon
- Department of Evolutionary Biology, University of Florence, Florence, Italy.
| | | | | | | |
Collapse
|
12
|
Zhang X, Goodsell J, Norgren RB. Limitations of the rhesus macaque draft genome assembly and annotation. BMC Genomics 2012; 13:206. [PMID: 22646658 PMCID: PMC3426473 DOI: 10.1186/1471-2164-13-206] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Accepted: 05/30/2012] [Indexed: 11/30/2022] Open
Abstract
Finished genome sequences and assemblies are available for only a few vertebrates. Thus, investigators studying many species must rely on draft genomes. Using the rhesus macaque as an example, we document the effects of sequencing errors, gaps in sequence and misassemblies on one automated gene model pipeline, Gnomon. The combination of draft genome with automated gene finding software can result in spurious sequences. We estimate that approximately 50% of the rhesus gene models are missing, incomplete or incorrect. The problems identified in this work likely apply to all draft vertebrate genomes annotated with any automated gene model pipeline and thus represent a pervasive challenge to the analysis of draft genomes.
Collapse
Affiliation(s)
- Xiongfei Zhang
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | | | | |
Collapse
|
13
|
Ventura M, Catacchio CR, Sajjadian S, Vives L, Sudmant PH, Marques-Bonet T, Graves TA, Wilson RK, Eichler EE. The evolution of African great ape subtelomeric heterochromatin and the fusion of human chromosome 2. Genome Res 2012; 22:1036-49. [PMID: 22419167 PMCID: PMC3371704 DOI: 10.1101/gr.136556.111] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Chimpanzee and gorilla chromosomes differ from human chromosomes by the presence of large blocks of subterminal heterochromatin thought to be composed primarily of arrays of tandem satellite sequence. We explore their sequence composition and organization and show a complex organization composed of specific sets of segmental duplications that have hyperexpanded in concert with the formation of subterminal satellites. These regions are highly copy number polymorphic between and within species, and copy number differences involving hundreds of copies can be accurately estimated by assaying read-depth of next-generation sequencing data sets. Phylogenetic and comparative genomic analyses suggest that the structures have arisen largely independently in the two lineages with the exception of a few seed sequences present in the common ancestor of humans and African apes. We propose a model where an ancestral human-chimpanzee pericentric inversion and the ancestral chromosome 2 fusion both predisposed and protected the chimpanzee and human genomes, respectively, to the formation of subtelomeric heterochromatin. Our findings highlight the complex interplay between duplicated sequences and chromosomal rearrangements that rapidly alter the cytogenetic landscape in a short period of evolutionary time.
Collapse
Affiliation(s)
- Mario Ventura
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA 98195, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Partipilo G, D'Addabbo P, Lacalandra GM, Liu GE, Rocchi M. Refinement of Bos taurus sequence assembly based on BAC-FISH experiments. BMC Genomics 2011; 12:639. [PMID: 22208360 PMCID: PMC3268123 DOI: 10.1186/1471-2164-12-639] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 12/30/2011] [Indexed: 11/30/2022] Open
Abstract
Background The sequencing of the cow genome was recently published (Btau_4.0 assembly). A second, alternate cow genome assembly (UMD2), based on the same raw sequence data, was also published. The two assemblies have been subsequently updated to Btau_4.2 and UMD3.1, respectively. Results We compared the Btau_4.2 and UMD3.1 alternate assemblies. Inconsistencies were grouped into three main categories: (i) DNA segments showing almost coincidental chromosomal mapping but discordant orientation (inversions); (ii) DNA segments showing a discordant map position along the same chromosome; and (iii) sequences present in one chromosomal assembly but absent in the corresponding chromosome of the other assembly. The latter category mainly consisted of large amounts of scaffolds that were unassigned in Btau_4.2 but successfully mapped in UMD3.1. We sampled 70 inconsistencies and identified appropriate cow BACs for each of them. These clones were then utilized in FISH experiments on cow metaphase or interphase nuclei in order to disambiguate the discrepancies. In almost all instances the FISH results agreed with the UMD3.1 assembly. Occasionally, however, the mapping data of both assemblies were discordant with the FISH results. Conclusions Our work demonstrates how FISH, which is assembly independent, can be efficiently used to solve assembly problems frequently encountered using the shotgun approach.
Collapse
Affiliation(s)
- Giulia Partipilo
- Department of Biology, University of Bari, Via Orabona 4, 70125 Bari, Italy
| | | | | | | | | |
Collapse
|
15
|
Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011; 4:22. [PMID: 21992653 PMCID: PMC3204295 DOI: 10.1186/1755-8166-4-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Accepted: 10/12/2011] [Indexed: 01/30/2023] Open
Abstract
The past decade has witnessed an explosion of genome sequencing and mapping in evolutionary diverse species. While full genome sequencing of mammals is rapidly progressing, the ability to assemble and align orthologous whole chromosome regions from more than a few species is still not possible. The intense focus on building of comparative maps for companion (dog and cat), laboratory (mice and rat) and agricultural (cattle, pig, and horse) animals has traditionally been used as a means to understand the underlying basis of disease-related or economically important phenotypes. However, these maps also provide an unprecedented opportunity to use multispecies analysis as a tool for inferring karyotype evolution. Comparative chromosome painting and related techniques are now considered to be the most powerful approaches in comparative genome studies. Homologies can be identified with high accuracy using molecularly defined DNA probes for fluorescence in situ hybridization (FISH) on chromosomes of different species. Chromosome painting data are now available for members of nearly all mammalian orders. In most orders, there are species with rates of chromosome evolution that can be considered as 'default' rates. The number of rearrangements that have become fixed in evolutionary history seems comparatively low, bearing in mind the 180 million years of the mammalian radiation. Comparative chromosome maps record the history of karyotype changes that have occurred during evolution. The aim of this review is to provide an overview of these recent advances in our endeavor to decipher the karyotype evolution of mammals by integrating the published results together with some of our latest unpublished results.
Collapse
|
16
|
Liu GE, Ventura M, Cellamare A, Chen L, Cheng Z, Zhu B, Li C, Song J, Eichler EE. Analysis of recent segmental duplications in the bovine genome. BMC Genomics 2009; 10:571. [PMID: 19951423 PMCID: PMC2796684 DOI: 10.1186/1471-2164-10-571] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Accepted: 12/01/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Duplicated sequences are an important source of gene innovation and structural variation within mammalian genomes. We performed the first systematic and genome-wide analysis of segmental duplications in the modern domesticated cattle (Bos taurus). Using two distinct computational analyses, we estimated that 3.1% (94.4 Mb) of the bovine genome consists of recently duplicated sequences (>or= 1 kb in length, >or= 90% sequence identity). Similar to other mammalian draft assemblies, almost half (47% of 94.4 Mb) of these sequences have not been assigned to cattle chromosomes. RESULTS In this study, we provide the first experimental validation large duplications and briefly compared their distribution on two independent bovine genome assemblies using fluorescent in situ hybridization (FISH). Our analyses suggest that the (75-90%) of segmental duplications are organized into local tandem duplication clusters. Along with rodents and carnivores, these results now confidently establish tandem duplications as the most likely mammalian archetypical organization, in contrast to humans and great ape species which show a preponderance of interspersed duplications. A cross-species survey of duplicated genes and gene families indicated that duplication, positive selection and gene conversion have shaped primates, rodents, carnivores and ruminants to different degrees for their speciation and adaptation. We identified that bovine segmental duplications corresponding to genes are significantly enriched for specific biological functions such as immunity, digestion, lactation and reproduction. CONCLUSION Our results suggest that in most mammalian lineages segmental duplications are organized in a tandem configuration. Segmental duplications remain problematic for genome and assembly and we highlight genic regions that require higher quality sequence characterization. This study provides insights into mammalian genome evolution and generates a valuable resource for cattle genomics research.
Collapse
Affiliation(s)
- George E Liu
- USDA, ARS, ANRI, Bovine Functional Genomics Laboratory, Beltsville, Maryland 20705, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Rocchi M, Stanyon R, Archidiacono N. Evolutionary new centromeres in primates. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2009; 48:103-52. [PMID: 19521814 DOI: 10.1007/978-3-642-00182-6_5] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The centromere has a pivotal role in structuring chromosomal architecture, but remains a poorly understood and seemingly paradoxical "black hole." Centromeres are a very rapidly evolving segment of the genome and it is now known that centromere shifts in evolution are not rare and must be considered on a par with other chromosome rearrangements. Recently, unprecedented findings on neocentromeres and evolutionary new centromeres (ENC) have helped clarify the relationship of the centromere within the genome and shown that these two phenomena are two faces of the same coin. No prominent sequence features are known that promote centromere formation and both types of new centromeres are formed epigenetically, both clinical neocentromeres and ENC cluster at chromosomal "hotspots." The clustering of neocentromeres in 8p is probably the result of the relatively high frequency of noncanonical pairing. Studies on the evolution of the chromosomes 3, 13, and 15 help explain why there are clusters of neocentromeres. These domains often correspond to ancestral inactivated centromeres and some regions can preserve features that trigger neocentromere emergence over tens of millions of years. Neocentromeres may be correlated with the distribution of segmental duplications (SDs) in regions of extreme plasticity that often can be characterized as gene deserts. Further, because centromeres and associated pericentric regions are dynamically complex, centromere shifts may turbocharge genome reorganization by influencing the distribution of heterochromatin. The "reuse" of regions as centromere seeding-points in evolution and in human clinical cases further extends the concept of "reuse" of specific domains for "chromosomal events."
Collapse
Affiliation(s)
- Mariano Rocchi
- Dipartimento di Genetica e Microbiologia, Via Amendola, 165/A, 70126 Bari, Italy.
| | | | | |
Collapse
|
18
|
A satellite-like sequence, representing a "clone gap" in the human genome, was likely involved in the seeding of a novel centromere in macaque. Chromosoma 2008; 118:269-77. [PMID: 19048265 DOI: 10.1007/s00412-008-0196-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2008] [Revised: 11/06/2008] [Accepted: 11/07/2008] [Indexed: 10/21/2022]
Abstract
Although the human genome sequence is generally considered "finished", the latest assembly (NCBI Build 36.1) still presents a number of gaps. Some of them are defined as "clone gaps" because they separate neighboring contigs. Evolutionary new centromeres are centromeres that repositioned along the chromosome, without marker order variation, during evolution. We have found that one human "clone gap" at 18q21.2 corresponds to an evolutionary new centromere in Old World Monkeys (OWM). The partially sequenced gap revealed a satellite-like structure. DNA stretches of the same satellite were found in the macaque (flanking the chromosome 18 centromere) and in the marmoset (New World Monkey), which was used as an outgroup. These findings strongly suggested that the repeat was present at the time of novel centromere seeding in OWM ancestor. We have provided, therefore, the first instance of a specific sequence hypothesized to have played a role in triggering the emergence of an evolutionary new centromere.
Collapse
|