1
|
Evolution of the Human Chromosome 13 Synteny: Evolutionary Rearrangements, Plasticity, Human Disease Genes and Cancer Breakpoints. Genes (Basel) 2020; 11:genes11040383. [PMID: 32244767 PMCID: PMC7230465 DOI: 10.3390/genes11040383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 01/29/2023] Open
Abstract
The history of each human chromosome can be studied through comparative cytogenetic approaches in mammals which permit the identification of human chromosomal homologies and rearrangements between species. Comparative banding, chromosome painting, Bacterial Artificial Chromosome (BAC) mapping and genome data permit researchers to formulate hypotheses about ancestral chromosome forms. Human chromosome 13 has been previously shown to be conserved as a single syntenic element in the Ancestral Primate Karyotype; in this context, in order to study and verify the conservation of primate chromosomes homologous to human chromosome 13, we mapped a selected set of BAC probes in three platyrrhine species, characterised by a high level of rearrangements, using fluorescence in situ hybridisation (FISH). Our mapping data on Saguinus oedipus, Callithrix argentata and Alouatta belzebul provide insight into synteny of human chromosome 13 evolution in a comparative perspective among primate species, showing rearrangements across taxa. Furthermore, in a wider perspective, we have revised previous cytogenomic literature data on chromosome 13 evolution in eutherian mammals, showing a complex origin of the eutherian mammal ancestral karyotype which has still not been completely clarified. Moreover, we analysed biomedical aspects (the OMIM and Mitelman databases) regarding human chromosome 13, showing that this autosome is characterised by a certain level of plasticity that has been implicated in many human cancers and diseases.
Collapse
|
2
|
Admixture in Mammals and How to Understand Its Functional Implications. Bioessays 2019; 41:e1900123. [DOI: 10.1002/bies.201900123] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 10/03/2019] [Indexed: 12/13/2022]
|
3
|
Fan Z, Zhou A, Osada N, Yu J, Jiang J, Li P, Du L, Niu L, Deng J, Xu H, Xing J, Yue B, Li J. Ancient hybridization and admixture in macaques (genus Macaca) inferred from whole genome sequences. Mol Phylogenet Evol 2018; 127:376-386. [PMID: 29614345 DOI: 10.1016/j.ympev.2018.03.038] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 03/23/2018] [Accepted: 03/30/2018] [Indexed: 12/25/2022]
Abstract
The evolutionary history of the stump-tailed macaque (Macaca arctoides) and its genetic relationship to other macaques is a subject of continuing controversy. Here, we have reported the first genome sequences of two stump-tailed macaques and one Assamese macaque (M. assamensis). Additionally, we have investigated the genetic diversity between macaque species and analyzed ancient hybridization events. Genome-wide analyses demonstrated that the stump-tailed macaque is more closely related to sinica species than to fascicularis/mulatta species. This topology contradicts the mitochondrial sequence-based phylogeny that places the stump-tailed macaque into the fascicularis/mulatta group. However, our results further show that stump-tailed macaques have genetic backgrounds distinct from sinica species, and present evidence of gene flows with rhesus macaques. We suggest that an ancient introgression occurred after stump-tailed macaques diverged from sinica species. The distinct gene flow between proto-arctoides and proto-mulatta resulted in the transfer of rhesus macaque-type mitochondria into proto-arctoides. The rhesus macaque-type mitochondria remained in populations because of genetic drift during the bottleneck. The PSMC results and morphological and geographic evidence are consistent with the mitochondria capture pattern in the stump-tailed macaque. The molecular clock estimates suggest that the mitochondrial transference into stump-tailed macaques occurred 0.4-1.4 million years ago. Furthermore, we detected extensive admixtures between different macaque species, indicating that gene flow has played an important role in the evolutionary history of the genus Macaca.
Collapse
Affiliation(s)
- Zhenxin Fan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Anbo Zhou
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Naoki Osada
- Graduate School of Information Science and Technology, Hokkaido University, Sapporo, Hokkaido 060-0814, Japan
| | - Jianqiu Yu
- Chengdu Zoo, Institute of Chengdu Wildlife, Chengdu 610081, People's Republic of China
| | - Juan Jiang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Peng Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Lianming Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Lili Niu
- Chengdu Zoo, Institute of Chengdu Wildlife, Chengdu 610081, People's Republic of China
| | - Jiabo Deng
- Chengdu Zoo, Institute of Chengdu Wildlife, Chengdu 610081, People's Republic of China
| | - Huailiang Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, People's Republic of China
| | - Jinchuan Xing
- Department of Genetics, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Bisong Yue
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| | - Jing Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China.
| |
Collapse
|
4
|
Finstermeier K, Zinner D, Brameier M, Meyer M, Kreuz E, Hofreiter M, Roos C. A mitogenomic phylogeny of living primates. PLoS One 2013; 8:e69504. [PMID: 23874967 PMCID: PMC3713065 DOI: 10.1371/journal.pone.0069504] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 06/11/2013] [Indexed: 12/28/2022] Open
Abstract
Primates, the mammalian order including our own species, comprise 480 species in 78 genera. Thus, they represent the third largest of the 18 orders of eutherian mammals. Although recent phylogenetic studies on primates are increasingly built on molecular datasets, most of these studies have focused on taxonomic subgroups within the order. Complete mitochondrial (mt) genomes have proven to be extremely useful in deciphering within-order relationships even up to deep nodes. Using 454 sequencing, we sequenced 32 new complete mt genomes adding 20 previously not represented genera to the phylogenetic reconstruction of the primate tree. With 13 new sequences, the number of complete mt genomes within the parvorder Platyrrhini was widely extended, resulting in a largely resolved branching pattern among New World monkey families. We added 10 new Strepsirrhini mt genomes to the 15 previously available ones, thus almost doubling the number of mt genomes within this clade. Our data allow precise date estimates of all nodes and offer new insights into primate evolution. One major result is a relatively young date for the most recent common ancestor of all living primates which was estimated to 66-69 million years ago, suggesting that the divergence of extant primates started close to the K/T-boundary. Although some relationships remain unclear, the large number of mt genomes used allowed us to reconstruct a robust primate phylogeny which is largely in agreement with previous publications. Finally, we show that mt genomes are a useful tool for resolving primate phylogenetic relationships on various taxonomic levels.
Collapse
Affiliation(s)
- Knut Finstermeier
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Dietmar Zinner
- Cognitive Ethology Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Markus Brameier
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Matthias Meyer
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Eva Kreuz
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Michael Hofreiter
- Research Group Molecular Ecology, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Christian Roos
- Primate Genetics Laboratory, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- Gene Bank of Primates, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- * E-mail:
| |
Collapse
|
5
|
Farré M, Micheletti D, Ruiz-Herrera A. Recombination rates and genomic shuffling in human and chimpanzee--a new twist in the chromosomal speciation theory. Mol Biol Evol 2012. [PMID: 23204393 PMCID: PMC3603309 DOI: 10.1093/molbev/mss272] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
A long-standing question in evolutionary biology concerns the effect of recombination in shaping the genomic architecture of organisms and, in particular, how this impacts the speciation process. Despite efforts employed in the last decade, the role of chromosomal reorganizations in the human-chimpanzee speciation process remains unresolved. Through whole-genome comparisons, we have analyzed the genome-wide impact of genomic shuffling in the distribution of human recombination rates during the human-chimpanzee speciation process. We have constructed a highly refined map of the reorganizations and evolutionary breakpoint regions in the human and chimpanzee genomes based on orthologous genes and genome sequence alignments. The analysis of the most recent human and chimpanzee recombination maps inferred from genome-wide single-nucleotide polymorphism data revealed that the standardized recombination rate was significantly lower in rearranged than in collinear chromosomes. In fact, rearranged chromosomes presented significantly lower recombination rates than chromosomes that have been maintained since the ancestor of great apes, and this was related with the lineage in which they become fixed. Importantly, inverted regions had lower recombination rates than collinear and noninverted regions, independently of the effect of centromeres. Our observations have implications for the chromosomal speciation theory, providing new evidences for the contribution of inversions in suppressing recombination in mammals.
Collapse
Affiliation(s)
- Marta Farré
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, Campus UAB, Cerdanyola del Vallès, Barcelona, Spain
| | | | | |
Collapse
|
6
|
The lemur revolution starts now: the genomic coming of age for a non-model organism. Mol Phylogenet Evol 2012; 66:442-52. [PMID: 22982436 DOI: 10.1016/j.ympev.2012.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 08/24/2012] [Accepted: 08/27/2012] [Indexed: 12/25/2022]
Abstract
Morris Goodman was a revolutionary. Together with a mere handful of like-minded scientists, Morris established himself as a leader in the molecular phylogenetic revolution of the 1960s. The effects of this revolution are most evident in this journal, which he founded in 1992. Happily for lemur biologists, one of Morris Goodman's primary interests was in reconstructing the phylogeny of the primates, including the tooth-combed Lorisifomes of Africa and Asia, and the Lemuriformes of Madagascar (collectively referred to as the suborder Strepsirrhini). This paper traces the development of molecular phylogenetic and evolutionary genetic trends and methods over the 50-year expanse of Morris Goodman's career, particularly as they apply to our understanding of lemuriform phylogeny, biogeography, and biology. Notably, this perspective reveals that the lemuriform genome is sufficiently rich in phylogenetic signal such that the very earliest molecular phylogenetic studies - many of which were conducted by Goodman himself - have been validated by contemporary studies that have exploited advanced computational methods applied to phylogenomic scale data; studies that were beyond imagining in the earliest days of phylogeny reconstruction. Nonetheless, the frontier still beckons. New technologies for gathering and analyzing genomic data will allow investigators to build upon what can now be considered a nearly-known phylogeny of the Lemuriformes in order to ask innovative questions about the evolutionary mechanisms that generate and maintain the extraordinary breadth and depth of biological diversity within this remarkable clade of primates.
Collapse
|
7
|
Nie W. Molecular cytogenetic studies in strepsirrhine primates, Dermoptera and Scandentia. Cytogenet Genome Res 2012; 137:246-58. [PMID: 22614467 DOI: 10.1159/000338727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Since the first chromosome painting study between human and strepsirrhine primates was performed in 1996, nearly 30 species in Strepsirrhini, Dermoptera and Scandentia have been analyzed by cross-species chromosome painting. Here, the contribution of chromosome painting data to our understanding of primate genome organization, chromosome evolution and the karyotype phylogenetic relationships within strepsirrhine primates, Dermoptera and Scandentia is reviewed. Twenty-six to 43 homologous chromosome segments have been revealed in different species with human chromosome-specific paint probes. Various landmark rearrangements characteristic for each different lineage have been identified, as cytogenetic signatures that potentially unite certain lineages within strepsirrhine primates, Dermoptera and Scandentia.
Collapse
Affiliation(s)
- W Nie
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, PR China.
| |
Collapse
|
8
|
Zinner D, Arnold ML, Roos C. The strange blood: natural hybridization in primates. Evol Anthropol 2012; 20:96-103. [PMID: 22034167 DOI: 10.1002/evan.20301] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hybridization between two closely related species is a natural evolutionary process that results in an admixture of previously isolated gene pools. The exchange of genes between species may accelerate adaptation and lead to the formation of new lineages. Hybridization can be regarded as one important evolutionary mechanism driving speciation processes. Although recent studies have highlighted the taxonomic breadth of natural hybridization in the primate order, information about primate hybridization is still limited compared to that about the hybridization of fish, birds, or other mammals. In primates, hybridization has occurred mainly between subspecies and species, but has also been detected between genera and even in the human lineage. Here we provide an overview of cases of natural hybridization in all major primate radiations. Our review emphasizes a phylogenetic approach. We use the data presented to discuss the impact of hybridization on taxonomy and conservation.
Collapse
Affiliation(s)
- Dietmar Zinner
- Ceognitive Ethology Laboratory, German Primate Center, University of Göttingen, Germany.
| | | | | |
Collapse
|
9
|
Roos C, Zinner D, Kubatko LS, Schwarz C, Yang M, Meyer D, Nash SD, Xing J, Batzer MA, Brameier M, Leendertz FH, Ziegler T, Perwitasari-Farajallah D, Nadler T, Walter L, Osterholz M. Nuclear versus mitochondrial DNA: evidence for hybridization in colobine monkeys. BMC Evol Biol 2011; 11:77. [PMID: 21435245 PMCID: PMC3068967 DOI: 10.1186/1471-2148-11-77] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 03/24/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Colobine monkeys constitute a diverse group of primates with major radiations in Africa and Asia. However, phylogenetic relationships among genera are under debate, and recent molecular studies with incomplete taxon-sampling revealed discordant gene trees. To solve the evolutionary history of colobine genera and to determine causes for possible gene tree incongruences, we combined presence/absence analysis of mobile elements with autosomal, X chromosomal, Y chromosomal and mitochondrial sequence data from all recognized colobine genera. RESULTS Gene tree topologies and divergence age estimates derived from different markers were similar, but differed in placing Piliocolobus/Procolobus and langur genera among colobines. Although insufficient data, homoplasy and incomplete lineage sorting might all have contributed to the discordance among gene trees, hybridization is favored as the main cause of the observed discordance. We propose that African colobines are paraphyletic, but might later have experienced female introgression from Piliocolobus/Procolobus into Colobus. In the late Miocene, colobines invaded Eurasia and diversified into several lineages. Among Asian colobines, Semnopithecus diverged first, indicating langur paraphyly. However, unidirectional gene flow from Semnopithecus into Trachypithecus via male introgression followed by nuclear swamping might have occurred until the earliest Pleistocene. CONCLUSIONS Overall, our study provides the most comprehensive view on colobine evolution to date and emphasizes that analyses of various molecular markers, such as mobile elements and sequence data from multiple loci, are crucial to better understand evolutionary relationships and to trace hybridization events. Our results also suggest that sex-specific dispersal patterns, promoted by a respective social organization of the species involved, can result in different hybridization scenarios.
Collapse
Affiliation(s)
- Christian Roos
- Primate Genetics Laboratory, German Primate Center, Göttingen, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Comparing chromosomal and mitochondrial phylogenies of the Indriidae (Primates, Lemuriformes). Chromosome Res 2011; 19:209-24. [PMID: 21336668 PMCID: PMC3075406 DOI: 10.1007/s10577-011-9188-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2010] [Revised: 01/11/2011] [Accepted: 01/12/2011] [Indexed: 11/23/2022]
Abstract
The Malagasy primate family Indriidae comprises three genera with up to 19 species. Cytogenetic and molecular phylogenies of the Indriidae have been performed with special attention to the genus Propithecus. Comparative R-banding and FISH with human paints were applied to karyotypes of representatives of all three genera and confirmed most of the earlier R-banding results. However, additional chromosomal rearrangements were detected. A reticulated and a cladistic phylogeny, the latter including hemiplasies, have been performed. Cladistic analysis of cytogenetic data resulted in a phylogenetic tree revealing (1) monophyly of the family Indriidae, (2) monophyly of the genus Avahi, (3) sister–group relationships between Propithecus diadema and Propithecus edwardsi, and (4) the grouping of the latter with Indri indri, Propithecus verreauxi, and Propithecus tattersalli, and thus suggesting paraphyly of the genus Propithecus. A molecular phylogeny based on complete mitochondrial cytochrome b sequences of 16 species indicated some identical relationships, such as the monophyly of Avahi and the sister–group relationships of the eastern (P. diadema and P. edwardsi) to the western Propithecus species (P. verreauxi, Propithecus coquereli, and P. tattersalli). However, the main difference between the molecular and cytogenetic phylogenies consists in an early divergence of Indri in the molecular phylogeny while in the chromosomal phylogeny it is nested within Propithecus. The similarities and differences between molecular and cytogenetic phylogenies in relation to data on the species’ geographic distributions and mating systems allow us to propose a scenario of the evolution of Indriidae. Chromosomal and molecular processes alone or in combination created a reproductive barrier that was then followed by further speciation processes.
Collapse
|
11
|
A Phylogenetic Analysis of Human Syntenies Revealed by Chromosome Painting in Euarchontoglires Orders. J MAMM EVOL 2010. [DOI: 10.1007/s10914-010-9150-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
12
|
Veyrunes F, Catalan J, Tatard C, Cellier-Holzem E, Watson J, Chevret P, Robinson TJ, Britton-Davidian J. Mitochondrial and chromosomal insights into karyotypic evolution of the pygmy mouse, Mus minutoides, in South Africa. Chromosome Res 2010; 18:563-74. [PMID: 20582567 DOI: 10.1007/s10577-010-9144-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 06/11/2010] [Accepted: 06/13/2010] [Indexed: 10/19/2022]
Abstract
The African pygmy mouse, Mus minutoides, displays extensive Robertsonian (Rb) diversity. The two extremes of the karyotypic range are found in South Africa, with populations carrying 2n = 34 and 2n = 18. In order to reconstruct the scenario of chromosomal evolution of M. minutoides and test the performance of Rb fusions in resolving fine-scale phylogenetic relationships, we first describe new karyotypes, and then perform phylogenetic analyses by two independent methods, using respectively mitochondrial cytochrome b sequences and chromosomal rearrangements as markers. The molecular and chromosomal phylogenies were in perfect congruence, providing strong confidence both for the tree topology and the chronology of chromosomal rearrangements. The analysis supports a division of South African specimens into two clades showing opposite trends of chromosomal evolution, one containing all specimens with 34 chromosomes (karyotypic stasis) and the other grouping all mice with 18 chromosomes that have further diversified by the fixation of different Rb fusions (extensive karyotypic reshuffling). The results confirm that Rb fusions are by far the predominant rearrangement in M. minutoides but strongly suggest that recurrent whole-arm reciprocal translocations have also shaped this genome.
Collapse
Affiliation(s)
- Frederic Veyrunes
- Institut des Sciences de l'Evolution, UMR5554 CNRS/Université Montpellier II, Montpellier, France.
| | | | | | | | | | | | | | | |
Collapse
|
13
|
African apes as reservoirs of Plasmodium falciparum and the origin and diversification of the Laverania subgenus. Proc Natl Acad Sci U S A 2010; 107:10561-6. [PMID: 20498054 DOI: 10.1073/pnas.1005435107] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We investigated two mitochondrial genes (cytb and cox1), one plastid gene (tufA), and one nuclear gene (ldh) in blood samples from 12 chimpanzees and two gorillas from Cameroon and one lemur from Madagascar. One gorilla sample is related to Plasmodium falciparum, thus confirming the recently reported presence in gorillas of this parasite. The second gorilla sample is more similar to the recently defined Plasmodium gaboni than to the P. falciparum-Plasmodium reichenowi clade, but distinct from both. Two chimpanzee samples are P. falciparum. A third sample is P. reichenowi and two others are P. gaboni. The other chimpanzee samples are different from those in the ape clade: two are Plasmodium ovale, and one is Plasmodium malariae. That is, we have found three human Plasmodium parasites in chimpanzees. Four chimpanzee samples were mixed: one species was P. reichenowi; the other species was P. gaboni in three samples and P. ovale in the fourth sample. The lemur sample, provisionally named Plasmodium malagasi, is a sister lineage to the large cluster of primate parasites that does not include P. falciparum or ape parasites, suggesting that the falciparum + ape parasite cluster (Laverania clade) may have evolved from a parasite present in hosts not ancestral to the primates. If malignant malaria were eradicated from human populations, chimpanzees, in addition to gorillas, might serve as a reservoir for P. falciparum.
Collapse
|
14
|
White TA, Bordewich M, Searle JB. A network approach to study karyotypic evolution: the chromosomal races of the common shrew (Sorex araneus) and house mouse (Mus musculus) as model systems. Syst Biol 2010; 59:262-76. [PMID: 20525634 DOI: 10.1093/sysbio/syq004] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The development of methods to reconstruct phylogenies from karyotypic data has lagged behind what has been achieved with molecular and morphological characters. This hampers our understanding of the role of chromosomal rearrangements in speciation, which depends on knowledge of the karyotypic relationships both among forms that have recently speciated and among forms within species that may speciate in the future. Here, we present a new approach to reconstruct chromosomal phylogenies. Our approach involves the use of networks, which we believe offer a flexible alternative to bifurcating phylogenetic trees for chromosomal phylogenetic analyses, and can incorporate a wide range of chromosomal mutations as well as allowing reticulate evolution through hybridization. In this paper, we apply our method at the within-species level to establish the phylogenetic history, in terms of minimum number of evolutionary steps, of chromosomal races within both the common shrew (Sorex araneus) and the house mouse (Mus musculus). There have been several previous attempts to reconstruct the phylogenies of chromosomal races within shrews and mice, but we describe the first computer-based analysis that considers the whole range of possible mutations generating new races (Robertsonian fusions and fissions and whole-arm reciprocal translocations [WARTs]) and other race-generating processes (zonal raciation events involving both acrocentric and recombinant peaks) postulated for these species. The analysis for common shrew chromosomal races reveals a greater importance of zonal raciation and WARTs than has been suggested hitherto.
Collapse
Affiliation(s)
- Thomas A White
- School of Biological and Biomedical Sciences, Durham University, South Road, Durham, UK.
| | | | | |
Collapse
|