1
|
Galkina S, Matveeva K, Takki O, Volodkina V, Kulak M, Shalutina J, Gaginskaya E. Coilin-containing nuclear biomolecular condensates in zebra finch Taeniopygia guttata growing oocytes. Dev Biol 2025; 524:144-151. [PMID: 40374142 DOI: 10.1016/j.ydbio.2025.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 05/11/2025] [Accepted: 05/13/2025] [Indexed: 05/17/2025]
Abstract
In most animals, oocyte growth is accompanied by genome activation, an increase in nuclear volume, and the formation of various biomolecular condensates (BioMCs) through multivalent interactions involving intrinsically disordered protein regions (IDRs) and phase separation. In this study, we characterize specific nuclear biomolecular condensates (NBioMCs) detectable by light microscopy in the oocytes of the zebra finch (Taeniopygia guttata, Passeriformes, Aves), a model species in genomics and neurobiology. We identified a nucleolus in oocytes at the early diplotene stage and observed numerous NBioMCs that tested positive for coilin in oocytes at the lampbrush stage, a period of active transcription. The coilin-positive NBioMCs may be freely distributed within the nucleus or associated with chromosome centromeres. They share characteristics with several known nuclear structures, including nucleoli (due to the presence of fibrillarin and nucleolin), Cajal bodies (marked by coilin and scaRNA2), interchromatin granule clusters (containing SRSF2), and centromeric protein bodies (CPBs) described in other avian species (exhibiting centromeric localization when chromosome-associated and containing STAG2 and SMC5). However, their specific function in zebra finch oocytes remains unclear and requires further investigation.
Collapse
Affiliation(s)
| | | | - Olga Takki
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | - Maria Kulak
- Saint Petersburg State University, Saint Petersburg, Russia
| | | | | |
Collapse
|
2
|
Deryusheva S, Liu JL, Nizami ZF, Talross GJS, Gerbi SA. An incredible life in science: Joseph G. Gall (1928-2024). RNA (NEW YORK, N.Y.) 2025; 31:453-464. [PMID: 39919787 PMCID: PMC12046345 DOI: 10.1261/rna.080406.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/27/2025] [Indexed: 02/09/2025]
Affiliation(s)
- Svetlana Deryusheva
- Carnegie Institution for Science, Department of Embryology, Baltimore, Maryland 21218, USA
| | - Ji-Long Liu
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford OX1 3PT, United Kingdom
| | - Zehra F Nizami
- PartitionBio, Science Village, Chesterford Research Park, Little Chesterford, Saffron Walden CB10 1XL, United Kingdom
| | - Gaëlle J S Talross
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, Connecticut 06511, USA
| | - Susan A Gerbi
- Brown University Division of Biology and Medicine, Department of Molecular and Cell Biology and Biochemistry, Providence, Rhode Island 02912, USA
| |
Collapse
|
3
|
Tian K, Wang R, Huang J, Wang H, Ji X. Subcellular localization shapes the fate of RNA polymerase III. Cell Rep 2023; 42:112941. [PMID: 37556328 DOI: 10.1016/j.celrep.2023.112941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/11/2023] Open
Abstract
RNA polymerase III (Pol III) plays a vital role in transcription and as a viral-DNA sensor, but how it is assembled and distributed within cells remains poorly understood. Here, we show that Pol III is assembled with chaperones in the cytoplasm and forms transcription-dependent protein clusters upon transport into the nucleus. The largest subunit (RPC1) depletion through an auxin-inducible degron leads to rapid degradation and disassembly of Pol III complex in the nucleus and cytoplasm, respectively. This generates a pool of partially assembled Pol III intermediates, which can be rapidly mobilized into the nucleus upon the restoration of RPC1. Our study highlights the critical role of subcellular localization in determining Pol III's fate and provides insight into the dynamic regulation of nuclear Pol III levels and the origin of cytoplasmic Pol III complexes involved in mediating viral immunity.
Collapse
Affiliation(s)
- Kai Tian
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Rui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Jie Huang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Hui Wang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xiong Ji
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
4
|
Biological colloids: Unique properties of membranelles organelles in the cell. Adv Colloid Interface Sci 2022; 310:102777. [DOI: 10.1016/j.cis.2022.102777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/24/2022]
|
5
|
Keinath MC, Davidian A, Timoshevskiy V, Timoshevskaya N, Gall JG. Characterization of axolotl lampbrush chromosomes by fluorescence in situ hybridization and immunostaining. Exp Cell Res 2021; 401:112523. [PMID: 33675804 PMCID: PMC8123938 DOI: 10.1016/j.yexcr.2021.112523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/08/2021] [Accepted: 02/15/2021] [Indexed: 10/25/2022]
Abstract
The lampbrush chromosomes (LBCs) in oocytes of the Mexican axolotl (Ambystoma mexicanum) were identified some time ago by their relative lengths and predicted centromeres, but they have never been associated completely with the mitotic karyotype, linkage maps or genome assembly. We identified 9 of the axolotl LBCs using RNAseq to identify actively transcribed genes and 13 BAC (bacterial artificial clone) probes containing pieces of active genes. Using read coverage analysis to find candidate centromere sequences, we developed a centromere probe that localizes to all 14 centromeres. Measurements of relative LBC arm lengths and polymerase III localization patterns enabled us to identify all LBCs. This study presents a relatively simple and reliable way to identify each axolotl LBC cytologically and to anchor chromosome-length sequences (from the axolotl genome assembly) to the physical LBCs by immunostaining and fluorescence in situ hybridization. Our data will facilitate a more detailed transcription analysis of individual LBC loops.
Collapse
Affiliation(s)
| | - Asya Davidian
- Carnegie Institution for Science, Baltimore, MD, USA; Saint Petersburg State University, Saint Petersburg, Russia
| | | | | | - Joseph G Gall
- Carnegie Institution for Science, Baltimore, MD, USA.
| |
Collapse
|
6
|
Davidian A, Koshel E, Dyomin A, Galkina S, Saifitdinova A, Gaginskaya E. On some structural and evolutionary aspects of rDNA amplification in oogenesis of Trachemys scripta turtles. Cell Tissue Res 2020; 383:853-864. [PMID: 32897424 DOI: 10.1007/s00441-020-03282-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/12/2020] [Indexed: 10/23/2022]
Abstract
The features of rDNA amplification have been studied in oocytes of the red-eared slider Trachemys scripta using a number of specific histochemical and cytomolecular methods. A single nucleolus in early diplotene oocytes is associated with the nucleolus organizer region (NOR). With oocyte growth, the number of nucleoli increases dramatically and reaches hundreds by the lampbrush chromosome stage (pre-vitellogenesis). RNA-polymerase I, fibrillarin, and PCNA immunodetection in the amplified nucleoli and FISH of the 5'ETS probe to the oocyte nuclear content suggest pre-rRNA and rDNA synthesis in the nucleoli at all stages studied. This implies a continuous reproduction of the nucleoli during oocyte development from early diplotene up to vitellogenesis. The data obtained offer a different way for rDNA amplification and formation of extrachromosomal nucleoli in turtle oocytes compared with the amplified nucleoli formation in amphibian and fish oocytes. In the Sauropsida clade of Archelosauria, which includes turtles, crocodiles, and birds, rDNA function is known to be suppressed in avian oogenesis during the lampbrush stage (Gaginskaya et al. in Cytogenet Genome Res 124:251-267, 2009).
Collapse
Affiliation(s)
- Asya Davidian
- St Petersburg University, St Petersburg, 199034, Russia
| | | | - Alexander Dyomin
- St Petersburg University, St Petersburg, 199034, Russia.,Saratov State Medical University, Saratov, 410000, Russia
| | | | - Alsu Saifitdinova
- Herzen State Pedagogical University of Russia, St Petersburg, 191186, Russia
| | | |
Collapse
|
7
|
Krasikova A, Kulikova T. Identification of Genomic Loci Responsible for the Formation of Nuclear Domains Using Lampbrush Chromosomes. Noncoding RNA 2019; 6:ncrna6010001. [PMID: 31881720 PMCID: PMC7151628 DOI: 10.3390/ncrna6010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022] Open
Abstract
In the cell nuclei, various types of nuclear domains assemble as a result of transcriptional activity at specific chromosomal loci. Giant transcriptionally active lampbrush chromosomes, which form in oocyte nuclei of amphibians and birds enable the mapping of genomic sequences with high resolution and the visualization of individual transcription units. This makes avian and amphibian oocyte nuclei an advantageous model for studying locus-specific nuclear domains. We developed two strategies for identification and comprehensive analysis of the genomic loci involved in nuclear domain formation on lampbrush chromosomes. The first approach was based on the sequential FISH-mapping of BAC clones containing genomic DNA fragments with a known chromosomal position close to the locus of a nuclear domain. The second approach involved mechanical microdissection of the chromosomal region adjacent to the nuclear domain followed by the generation of FISH-probes and DNA sequencing. Furthermore, deciphering the DNA sequences from the dissected material by high throughput sequencing technologies and their mapping to the reference genome helps to identify the genomic region responsible for the formation of the nuclear domain. For those nuclear domains structured by nascent transcripts, identification of genomic loci of their formation is a crucial step in the identification of scaffold RNAs.
Collapse
|
8
|
Falahati H, Haji-Akbari A. Thermodynamically driven assemblies and liquid-liquid phase separations in biology. SOFT MATTER 2019; 15:1135-1154. [PMID: 30672955 DOI: 10.1039/c8sm02285b] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The sustenance of life depends on the high degree of organization that prevails through different levels of living organisms, from subcellular structures such as biomolecular complexes and organelles to tissues and organs. The physical origin of such organization is not fully understood, and even though it is clear that cells and organisms cannot maintain their integrity without consuming energy, there is growing evidence that individual assembly processes can be thermodynamically driven and occur spontaneously due to changes in thermodynamic variables such as intermolecular interactions and concentration. Understanding the phase separation in vivo requires a multidisciplinary approach, integrating the theory and physics of phase separation with experimental and computational techniques. This paper aims at providing a brief overview of the physics of phase separation and its biological implications, with a particular focus on the assembly of membraneless organelles. We discuss the underlying physical principles of phase separation from its thermodynamics to its kinetics. We also overview the wide range of methods utilized for experimental verification and characterization of phase separation of membraneless organelles, as well as the utility of molecular simulations rooted in thermodynamics and statistical physics in understanding the governing principles of thermodynamically driven biological self-assembly processes.
Collapse
Affiliation(s)
- Hanieh Falahati
- Department of Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA.
| | | |
Collapse
|
9
|
Deryusheva S, Gall JG. scaRNAs and snoRNAs: Are they limited to specific classes of substrate RNAs? RNA (NEW YORK, N.Y.) 2019; 25:17-22. [PMID: 30301832 PMCID: PMC6298559 DOI: 10.1261/rna.068593.118] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 10/07/2018] [Indexed: 05/28/2023]
Abstract
Posttranscriptional modifications of rRNA occur in the nucleolus where rRNA modification guide RNAs, or snoRNAs, concentrate. On the other hand, scaRNAs, the modification guide RNAs for spliceosomal snRNAs, concentrate in the Cajal body (CB). It is generally assumed, therefore, that snRNAs must accumulate in CBs to be modified by scaRNAs. Here we demonstrate that the evidence for the latter postulate is not consistent. In the nucleus, scaRNA localization is not limited to CBs. Furthermore, canonical scaRNAs can modify rRNAs. We suggest that the conventional view that scaRNAs function only in the CB needs revision.
Collapse
MESH Headings
- Animals
- Base Sequence
- Coiled Bodies/metabolism
- HeLa Cells
- Humans
- Nucleic Acid Conformation
- RNA Processing, Post-Transcriptional
- RNA, Ribosomal/chemistry
- RNA, Ribosomal/genetics
- RNA, Ribosomal/metabolism
- RNA, Small Nuclear/chemistry
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Small Nucleolar/chemistry
- RNA, Small Nucleolar/genetics
- RNA, Small Nucleolar/metabolism
- Spliceosomes/genetics
- Spliceosomes/metabolism
- Xenopus/genetics
- Xenopus/metabolism
- RNA, Guide, CRISPR-Cas Systems
Collapse
Affiliation(s)
- Svetlana Deryusheva
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| | - Joseph G Gall
- Department of Embryology, Carnegie Institution for Science, Baltimore, Maryland 21218, USA
| |
Collapse
|
10
|
Morgan GT. Imaging the dynamics of transcription loops in living chromosomes. Chromosoma 2018; 127:361-374. [PMID: 29610944 PMCID: PMC6096578 DOI: 10.1007/s00412-018-0667-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 03/08/2018] [Accepted: 03/12/2018] [Indexed: 12/21/2022]
Abstract
When in the lampbrush configuration, chromosomes display thousands of visible DNA loops that are transcribed at exceptionally high rates by RNA polymerase II (pol II). These transcription loops provide unique opportunities to investigate not only the detailed architecture of pol II transcription sites but also the structural dynamics of chromosome looping, which is receiving fresh attention as the organizational principle underpinning the higher-order structure of all chromosome states. The approach described here allows for extended imaging of individual transcription loops and transcription units under conditions in which loop RNA synthesis continues. In intact nuclei from lampbrush-stage Xenopus oocytes isolated under mineral oil, highly specific targeting of fluorescent fusions of the RNA-binding protein CELF1 to nascent transcripts allowed functional transcription loops to be observed and their longevity assessed over time. Some individual loops remained extended and essentially static structures over time courses of up to an hour. However, others were less stable and shrank markedly over periods of 30-60 min in a manner that suggested that loop extension requires continued dense coverage with nascent transcripts. In stable loops and loop-derived structures, the molecular dynamics of the visible nascent RNP component were addressed using photokinetic approaches. The results suggested that CELF1 exchanges freely between the accumulated nascent RNP and the surrounding nucleoplasm, and that it exits RNP with similar kinetics to its entrance. Overall, it appears that on transcription loops, nascent transcripts contribute to a dynamic self-organizing structure that exemplifies a phase-separated nuclear compartment.
Collapse
Affiliation(s)
- Garry T Morgan
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
11
|
Wong JT, Akhbar F, Ng AYE, Tay MLI, Loi GJE, Pek JW. DIP1 modulates stem cell homeostasis in Drosophila through regulation of sisR-1. Nat Commun 2017; 8:759. [PMID: 28970471 PMCID: PMC5624886 DOI: 10.1038/s41467-017-00684-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 07/19/2017] [Indexed: 01/09/2023] Open
Abstract
Stable intronic sequence RNAs (sisRNAs) are by-products of splicing and regulate gene expression. How sisRNAs are regulated is unclear. Here we report that a double-stranded RNA binding protein, Disco-interacting protein 1 (DIP1) regulates sisRNAs in Drosophila. DIP1 negatively regulates the abundance of sisR-1 and INE-1 sisRNAs. Fine-tuning of sisR-1 by DIP1 is important to maintain female germline stem cell homeostasis by modulating germline stem cell differentiation and niche adhesion. Drosophila DIP1 localizes to a nuclear body (satellite body) and associates with the fourth chromosome, which contains a very high density of INE-1 transposable element sequences that are processed into sisRNAs. DIP1 presumably acts outside the satellite bodies to regulate sisR-1, which is not on the fourth chromosome. Thus, our study identifies DIP1 as a sisRNA regulatory protein that controls germline stem cell self-renewal in Drosophila. Stable intronic sequence RNAs (sisRNAs) are by-products of splicing from introns with roles in embryonic development in Drosophila. Here, the authors show that the RNA binding protein DIP1 regulates sisRNAs in Drosophila, which is necessary for germline stem cell homeostasis.
Collapse
Affiliation(s)
- Jing Ting Wong
- Ngee Ann Polytechnic, 535 Clementi Road, Singapore, 599489, Singapore
| | - Farzanah Akhbar
- Temasek Polytechnic, 21 Tampines Avenue 1, Singapore, 529757, Singapore
| | - Amanda Yunn Ee Ng
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Mandy Li-Ian Tay
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore
| | - Gladys Jing En Loi
- National University of Singapore, 21 Lower Kent Ridge Road, Singapore, 119077, Singapore
| | - Jun Wei Pek
- Temasek Life Sciences Laboratory, 1 Research Link National University of Singapore, Singapore, 117604, Singapore.
| |
Collapse
|
12
|
Kulikova T, Khodyuchenko T, Petrov Y, Krasikova A. Low-voltage scanning electron microscopy study of lampbrush chromosomes and nuclear bodies in avian and amphibian oocytes. Sci Rep 2016; 6:36878. [PMID: 27857188 PMCID: PMC5114574 DOI: 10.1038/srep36878] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 10/24/2016] [Indexed: 12/01/2022] Open
Abstract
Nucleus is a highly compartmentalized part of the cell where the key processes of genome functionality are realized through the formation of non-membranous nuclear domains. Physically nuclear domains appear as liquid droplets with different viscosity stably maintained throughout the interphase or during the long diplotene stage of meiosis. Since nuclear body surface represents boundary between two liquid phases, the ultrastructural surface topography of nuclear domains is of an outstanding interest. The aim of this study was to examine ultrathin surface topography of the amphibian and avian oocyte nuclear structures such as lampbrush chromosomes, nucleoli, histone-locus bodies, Cajal body-like bodies, and the interchromatin granule clusters via low-voltage scanning electron microscopy. Our results demonstrate that nuclear bodies with similar molecular composition may differ dramatically in the surface topography and vice versa, nuclear bodies that do not share common molecular components may possess similar topographical characteristics. We also have analyzed surface distribution of particular nuclear antigens (double stranded DNA, coilin and splicing snRNA) using indirect immunogold labeling with subsequent secondary electron detection of gold nanoparticles. We suggest that ultrastructural surface morphology reflects functional status of a nuclear body.
Collapse
Affiliation(s)
| | | | - Yuri Petrov
- Saint-Petersburg State University, Saint-Petersburg, Russia
| | - Alla Krasikova
- Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
13
|
Żelazowska M, Fopp-Bayat D. Previtellogenic and vitellogenic oocytes in ovarian follicles of cultured siberian sturgeon Acipenser baerii (Chondrostei, Acipenseriformes). J Morphol 2016; 278:50-61. [PMID: 27859485 DOI: 10.1002/jmor.20618] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/15/2016] [Accepted: 09/18/2016] [Indexed: 12/16/2022]
Abstract
Previtellogenic and vitellogenic oocytes in ovarian follicles from cultured Siberian sturgeon Acipenser baerii were examined. In previtellogenic oocytes, granular and homogeneous zones in the cytoplasm (the ooplasm) are distinguished. Material of nuclear origin, rough endoplasmic reticulum, Golgi complexes, complexes of mitochondria with cement and round bodies are numerous in the granular ooplasm. In vitellogenic oocytes, the ooplasm comprises three zones: perinuclear area, endoplasm and periplasm. The endoplasm contains yolk platelets, lipid droplets, and aggregations of mitochondria and granules immersed in amorphous material. In the nucleoplasm, lampbrush chromosomes, nucleoli, and two types of nuclear bodies are present. The first type of nuclear bodies is initially composed of fibrillar threads only. Their ultrastructure subsequently changes and they contain threads and medium electron dense material. The second type of nuclear bodies is only composed of electron dense particles. All nuclear bodies impregnate with silver, stain with propidium iodide, and are DAPI-negative. Their possible role is discussed. All oocytes are surrounded by follicular cells and a basal lamina which is covered by thecal cells. Egg envelopes are not present in previtellogenic oocytes. In vitellogenic oocytes, the plasma membrane (the oolemma) is covered by three envelopes: vitelline envelope, chorion, and extrachorion. Vitelline envelope comprises four sublayers: filamentous layer, trabecular layer 2 (t2), homogeneous layer, and trabecular layer 1 (t1). In the chorion, porous layer 1 and porous layer 2 are distinguished in most voluminous examined oocytes. Three micropylar cells that are necessary for the formation of micropyles are present between follicular cells at the animal hemisphere. J. Morphol. 278:50-61, 2017. ©© 2016 Wiley Periodicals,Inc.
Collapse
Affiliation(s)
- Monika Żelazowska
- Department of Developmental Biology and Morphology of Invertebrates, Institute of Zoology, Jagiellonian University in Kraków, Gronostajowa 9, Kraków, 30-387, Poland
| | - Dorota Fopp-Bayat
- Department of Ichthyology, Faculty of Environmental Sciences, University of Warmia and Mazury in Olsztyn, Oczapowskiego 5, Olsztyn, 10-917, Poland
| |
Collapse
|
14
|
Abstract
A hallmark of Alzheimer's, Huntington's and similar diseases is the assembly of proteins into amyloids rather than folding into their native state. There is an increasing appreciation that amyloids, under specific conditions, may be non-pathogenic. Here we show that amyloids form as a normal part of Xenopus oocyte development. Amyloids are detectable in the cytosol and the nucleus using an amyloid binding dye and antibodies that recognize amyloid structure. In the cytosol, yolk platelets are amyloid reactive, as are a number of yet to be characterized particles. In the nucleus, we find particles associated with transcription by RNA polymerase I, II and III and RNA processing contain amyloids. Nuclear amyloids remain intact for hours following isolation; however, RNase treatment rapidly disrupts nuclear amyloids. Summary: Non-membrane-bound nuclear particles in Xenopus oocytes responsible for RNA transcription, modification and processing contain proteins assembled into amyloids as part of normal development.
Collapse
Affiliation(s)
- Michael H Hayes
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | - Daniel L Weeks
- Molecular and Cellular Biology Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Medical Scientist Training Program, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Department of Biochemistry, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA Department of Pediatrics, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
15
|
Yamagishi Y, Abe H. Reorganization of actin filaments by ADF/cofilin is involved in formation of microtubule structures during Xenopus oocyte maturation. Mol Biol Cell 2015; 26:4387-400. [PMID: 26424802 PMCID: PMC4666134 DOI: 10.1091/mbc.e15-01-0035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 09/25/2015] [Indexed: 01/06/2023] Open
Abstract
We examined the reorganization of actin filaments and microtubules during Xenopus oocyte maturation. Surrounding the germinal vesicle (GV) in immature oocytes, the cytoplasmic actin filaments reorganized to accumulate beneath the vegetal side of the GV, where the microtubule-organizing center and transient microtubule array (MTOC-TMA) assembled, just before GV breakdown (GVBD). Immediately after GVBD, both Xenopus ADF/cofilin (XAC) and its phosphatase Slingshot (XSSH) accumulated into the nuclei and intranuclear actin filaments disassembled from the vegetal side with the shrinkage of the GV. As the MTOC-TMA developed well, cytoplasmic actin filaments were retained at the MTOC-TMA base region. Suppression of XAC dephosphorylation by anti-XSSH antibody injection inhibited both actin filament reorganization and proper formation and localization of both the MTOC-TMA and meiotic spindles. Stabilization of actin filaments by phalloidin also inhibited formation of the MTOC-TMA and disassembly of intranuclear actin filaments without affecting nuclear shrinkage. Nocodazole also caused the MTOC-TMA and the cytoplasmic actin filaments at its base region to disappear, which further impeded disassembly of intranuclear actin filaments from the vegetal side. XAC appears to reorganize cytoplasmic actin filaments required for precise assembly of the MTOC and, together with the MTOC-TMA, regulate the intranuclear actin filament disassembly essential for meiotic spindle formation.
Collapse
Affiliation(s)
- Yuka Yamagishi
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan
| | - Hiroshi Abe
- Department of Nanobiology, Graduate School of Advanced Integration Science, Chiba University, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Khodyuchenko TA, Krasikova AV. Cajal bodies and histone locus bodies: Molecular composition and function. Russ J Dev Biol 2014. [DOI: 10.1134/s106236041406006x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Abstract
This review summarizes the current understanding of the role of nuclear bodies in regulating gene expression. The compartmentalization of cellular processes, such as ribosome biogenesis, RNA processing, cellular response to stress, transcription, modification and assembly of spliceosomal snRNPs, histone gene synthesis and nuclear RNA retention, has significant implications for gene regulation. These functional nuclear domains include the nucleolus, nuclear speckle, nuclear stress body, transcription factory, Cajal body, Gemini of Cajal body, histone locus body and paraspeckle. We herein review the roles of nuclear bodies in regulating gene expression and their relation to human health and disease.
Collapse
Affiliation(s)
| | - Cornelius F. Boerkoel
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-604-875-2157; Fax: +1-604-875-2376
| |
Collapse
|
18
|
Abstract
We previously demonstrated that sperm heads from amphibians (Xenopus and Rana) and zebrafish (Danio) could form giant lampbrush chromosomes when injected into the nucleus of amphibian oocytes. However, similar experiments with mammalian sperm heads were unsuccessful. Here, we describe a slightly modified procedure and demonstrate that human sperm heads can form giant lampbrush chromosomes when injected into the oocyte nucleus of the frog Xenopus laevis or the newt Notophthalmus viridescens. Human and other mammalian chromosomes do not form recognizable lampbrush chromosomes in their own oocytes or in any somatic cells. These experiments thus demonstrate that the lampbrush condition is an inducible state and that the amphibian oocyte nucleus contains all factors required to remodel the inactive chromatin of a mammalian sperm into a transcriptionally active state. They also demonstrate that absence of lampbrush chromosomes from human oocytes must relate to specific features of mammalian oogenesis, not to permanent genetic or epigenetic changes in the chromatin.
Collapse
|
19
|
Broome HJ, Carrero ZI, Douglas HE, Hebert MD. Phosphorylation regulates coilin activity and RNA association. Biol Open 2013; 2:407-15. [PMID: 23616925 PMCID: PMC3625869 DOI: 10.1242/bio.20133863] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Accepted: 01/22/2013] [Indexed: 01/01/2023] Open
Abstract
The Cajal body (CB) is a domain of concentrated components found within the nucleus of cells in an array of species that is functionally important for the biogenesis of telomerase and small nuclear ribonucleoproteins. The CB is a dynamic structure whose number and size change during the cell cycle and is associated with other nuclear structures and gene loci. Coilin, also known as the marker protein for the CB, is a phosphoprotein widely accepted for its role in maintaining CB integrity. Recent studies have been done to further elucidate functional activities of coilin apart from its structural role in the CB in an attempt to explore the rationale for coilin expression in cells that have few CBs or lack them altogether. Here we show that the RNA association profile of coilin changes in mitosis with respect to that during interphase. We provide evidence of transcriptional and/or processing dysregulation of several CB-related RNA transcripts as a result of ectopic expression of both wild-type and phosphomutant coilin proteins. We also show apparent changes in transcription and/or processing of these transcripts upon coilin knockdown in both transformed and primary cell lines. Additionally, we provide evidence of specific coilin RNase activity regulation, on both U2 and hTR transcripts, by phosphorylation of a single residue, serine 489. Collectively, these results point to additional functions for coilin that are regulated by phosphorylation.
Collapse
Affiliation(s)
- Hanna J Broome
- Department of Biochemistry, The University of Mississippi Medical Center , Jackson, MS 39216-4505 , USA
| | | | | | | |
Collapse
|