1
|
Donaldson B, Villagomez DAF, King WA. Classical, Molecular, and Genomic Cytogenetics of the Pig, a Clinical Perspective. Animals (Basel) 2021; 11:1257. [PMID: 33925534 PMCID: PMC8146943 DOI: 10.3390/ani11051257] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 02/06/2023] Open
Abstract
The chromosomes of the domestic pig (Sus scrofa domesticus) are known to be prone to reciprocal chromosome translocations and other balanced chromosome rearrangements with concomitant fertility impairment of carriers. In response to the remarkable prevalence of chromosome rearrangements in swine herds, clinical cytogenetics laboratories have been established in several countries in order to screen young boars for chromosome rearrangements prior to service. At present, clinical cytogenetics laboratories typically apply classical cytogenetics techniques such as giemsa-trypsin (GTG)-banding to produce high-quality karyotypes and reveal large-scale chromosome ectopic exchanges. Further refinements to clinical cytogenetics practices have led to the implementation of molecular cytogenetics techniques such as fluorescent in-situ hybridization (FISH), allowing for rearrangements to be visualized and breakpoints refined using fluorescently labelled painting probes. The next-generation of clinical cytogenetics include the implementation of DNA microarrays, and next-generation sequencing (NGS) technologies such as DNA sequencing to better explore tentative genome architecture changes. The implementation of these cytogenomics techniques allow the genomes of rearrangement carriers to be deciphered at the highest resolution, allowing rearrangements to be detected; breakpoints to be delineated; and, most importantly, potential gene implications of those chromosome rearrangements to be interrogated. Clinical cytogenetics has become an integral tool in the livestock industry, identifying rearrangements and allowing breeders to make informed breeding decisions.
Collapse
Affiliation(s)
- Brendan Donaldson
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | | | - W. Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
- Karyotekk Inc., Box 363 OVC, University of Guelph, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
2
|
Rezaei S, Donaldson B, Villagomez DAF, Revay T, Mary N, Grossi DA, King WA. Routine Karyotyping Reveals Frequent Mosaic Reciprocal Chromosome Translocations in Swine: Prevalence, Pedigree, and Litter Size. Sci Rep 2020; 10:7471. [PMID: 32366875 PMCID: PMC7198520 DOI: 10.1038/s41598-020-64134-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/01/2020] [Indexed: 11/09/2022] Open
Abstract
In the routine commercial karyotype analysis on 5,481 boars, we identified 32 carriers of mosaic reciprocal translocations, half of which were carrying a specific recurrent translocation, mos t(7;9). An additional 7 mosaic translocations were identified through lymphocyte karyotype analysis from parents and relatives of mosaic carriers (n = 45), a control group of non-carrier boars (n = 73), and a mitogen assessment study (n = 20), bringing the total number of mosaic carriers to 39 cases. Mosaic translocations in all carriers were recognized to be confined to hematopoietic cells as no translocations were identified in fibroblasts cells of the carriers. In addition, negative impact on reproduction was not observed as the fertility of the carriers and their relatives were comparable to breed averages, and cryptic mosaicism was not detected in the family tree. This paper presents the first study of mosaic reciprocal translocations identified in swine through routine screening practices on reproductively unproven breeding boars while presenting evidence that these type of chromosome abnormalities are not associated with any affected phenotype on the carrier animals. In addition, the detection of recurrent mosaic translocations in this study may emphasize the non-random nature of mosaic rearrangements in swine and the potential role of genomic elements in their formation.
Collapse
Affiliation(s)
- Samira Rezaei
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Brendan Donaldson
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Daniel A F Villagomez
- Departamento de Produccion Animal, Universidad de Guadalajara, Zapopan, 44100, Mexico
| | - Tamas Revay
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Alberta Children's Hospital Research Institute (ACHRI), University of Calgary, Calgary, AB, T2N 1N4, Canada
| | - Nicolas Mary
- UMR INRA-ENVT 444 Génétique Cellulaire, École Nationale Vétérinaire de Toulouse, 23 Chemin des Capelles - BP 87614, 31076, Toulouse, Cedex 3, France
| | - Daniela A Grossi
- Fast Genetics, 8,4001 Millar Avenue, Saskatoon, SK, S7K 2K6, Canada
| | - W Allan King
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Karyotekk Inc. Box 363 OVC, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
3
|
Drbalova J, Musilova P, Kubickova S, Sebestova H, Vahala J, Rubes J. Impact of karyotype organization on interlocus recombination between T cell receptor genes in Equidae. Cytogenet Genome Res 2015; 144:306-14. [PMID: 25765057 DOI: 10.1159/000377712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2015] [Indexed: 11/19/2022] Open
Abstract
The T cell receptor (TCR) genes (TRA, TRB, TRD and TRG) reside in 3 different chromosomal regions. During the maturation of T lymphocytes, the TCR genes are rearranged by site-specific recombination, a process that also predisposes T cells to aberrant rearrangements. Illegitimate recombination between the TCR genes occurs at a low level in healthy individuals, but this frequency may correlate with the risk of lymphoma. The aim of this work was to investigate interlocus recombination in equids. Illegitimate rearrangements were studied in peripheral blood lymphocytes by FISH with painting and BAC probes and by sequencing of PCR products, and the frequencies of recombination were assessed in horses and 4 other equids. The presence of several trans-rearrangement products between the TRA and TRG genes was verified by PCR in all investigated equids. Frequencies of trans-rearrangements in horses are higher than in humans, and colocalization of the TCR genes on the same chromosome increases the incidence of trans-rearrangements between them. The orientation of the TCR genes does not impact interlocus recombination itself but does affect the viability of cells carrying its products and consequently the number of trans-rearrangements observed in lymphocytes.
Collapse
Affiliation(s)
- Jitka Drbalova
- Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | | | | | | | | | | |
Collapse
|