1
|
Goncharov N, Baklanov I, Gulaia V, Shuliak A, Lanskikh D, Zhmenia V, Shmelev M, Shved N, Wu J, Liskovykh M, Larionov V, Kouprina N, Kumeiko V. Therapy enhancing chromosome instability may be advantageous for IDH1 R132H/WT gliomas. NAR Cancer 2025; 7:zcaf003. [PMID: 39949830 PMCID: PMC11822378 DOI: 10.1093/narcan/zcaf003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 01/13/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Recently revised brain tumor classification suggested a glioma treatment strategy that takes into consideration molecular variants in IDH1 and TP53 marker genes. While pathogenic variants of IDH1 and TP53 can be accompanied by chromosomal instability (CIN), the impact of IDH1 and TP53 mutations on genome stability remains unstudied. Elevated CIN might provide therapeutic targets, based on synergistic effects of chemotherapy with CIN-inducing drugs. Using an assay based on human artificial chromosomes, we investigated the impact of common glioma missense mutations in IDH1 and TP53 on chromosome transmission and demonstrated that IDH1R132H and TP53R248Q variants elevate CIN. We next found enhanced CIN levels and the sensitivity of IDH1 R132H/WT and TP53 R248Q/R248Q genotypes, introduced into U87 MG glioma cells by CRISPR/Cas9, to different drugs, including conventional temozolomide. It was found that U87 MG cells carrying IDH1 R132H/WT exhibit dramatic sensitivity to paclitaxel, which was independently confirmed on cell cultures derived from patients with naturally occurring IDH1 R132H/WT. Overall, our results suggest that the development of CIN-enhancing therapy for glioma tumors with the IDH1 R132H/WT genotype could be advantageous for adjuvant treatment.
Collapse
Affiliation(s)
- Nikolay V Goncharov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Ivan N Baklanov
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia S Gulaia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Anastasiia P Shuliak
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Daria V Lanskikh
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Valeriia M Zhmenia
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
| | - Mikhail E Shmelev
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Nikita A Shved
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| | - Jing Wu
- Neuro-Oncology Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD 20892, United States
| | - Vadim V Kumeiko
- School of Medicine and Life Sciences, Far Eastern Federal University, Vladivostok 690922, Russia
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch, Russian Academy of Sciences, Vladivostok 690041, Russia
| |
Collapse
|
2
|
Ohzeki J, Kugou K, Otake K, Okazaki K, Takahashi S, Shibata D, Masumoto H. Introduction of a long synthetic repetitive DNA sequence into cultured tobacco cells. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2022; 39:101-110. [PMID: 35937535 PMCID: PMC9300429 DOI: 10.5511/plantbiotechnology.21.1210a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 12/10/2021] [Indexed: 05/15/2023]
Abstract
Genome information has been accumulated for many species, and these genes and regulatory sequences are expected to be applied in plants by enhancing or creating new metabolic pathways. We hypothesized that manipulating a long array of repetitive sequences using tethered chromatin modulators would be effective for robust regulation of gene expression in close proximity to the arrays. This approach is based on a human artificial chromosome made of long synthetic repetitive DNA sequences in which we manipulated the chromatin by tethering the modifiers. However, a method for introducing long repetitive DNA sequences into plants has not yet been established. Therefore, we constructed a bacterial artificial chromosome-based binary vector in Escherichia coli cells to generate a construct in which a cassette of marker genes was inserted into 60-kb synthetic human centromeric repetitive DNA. The binary vector was then transferred to Agrobacterium cells and its stable maintenance confirmed. Next, using Agrobacterium-mediated genetic transformation, this construct was successfully introduced into the genome of cultured tobacco BY-2 cells to obtain a large number of stable one-copy strains. ChIP analysis of obtained BY-2 cell lines revealed that the introduced synthetic repetitive DNA has moderate chromatin modification levels with lower heterochromatin (H3K9me2) or euchromatin (H3K4me3) modifications compared to the host centromeric repetitive DNA or an active Tub6 gene, respectively. Such a synthetic DNA sequence with moderate chromatin modification levels is expected to facilitate manipulation of the chromatin structure to either open or closed.
Collapse
Affiliation(s)
- Junichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Kazuto Kugou
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Koei Okazaki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Seiji Takahashi
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
| | - Daisuke Shibata
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818, Japan
- E-mail: Tel: +81-438-52-3952 Fax: +81-438-52-3946
| |
Collapse
|
3
|
Smith OK, Limouse C, Fryer KA, Teran NA, Sundararajan K, Heald R, Straight AF. Identification and characterization of centromeric sequences in Xenopus laevis. Genome Res 2021; 31:958-967. [PMID: 33875480 PMCID: PMC8168581 DOI: 10.1101/gr.267781.120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/08/2021] [Indexed: 11/24/2022]
Abstract
Centromeres play an essential function in cell division by specifying the site of kinetochore formation on each chromosome for mitotic spindle attachment. Centromeres are defined epigenetically by the histone H3 variant Centromere Protein A (Cenpa). Cenpa nucleosomes maintain the centromere by designating the site for new Cenpa assembly after dilution by replication. Vertebrate centromeres assemble on tandem arrays of repetitive sequences, but the function of repeat DNA in centromere formation has been challenging to dissect due to the difficulty in manipulating centromeres in cells. Xenopus laevis egg extracts assemble centromeres in vitro, providing a system for studying centromeric DNA functions. However, centromeric sequences in Xenopus laevis have not been extensively characterized. In this study, we combine Cenpa ChIP-seq with a k-mer based analysis approach to identify the Xenopus laevis centromere repeat sequences. By in situ hybridization, we show that Xenopus laevis centromeres contain diverse repeat sequences, and we map the centromere position on each Xenopus laevis chromosome using the distribution of centromere-enriched k-mers. Our identification of Xenopus laevis centromere sequences enables previously unapproachable centromere genomic studies. Our approach should be broadly applicable for the analysis of centromere and other repetitive sequences in any organism.
Collapse
Affiliation(s)
- Owen K Smith
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA.,Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California 94305, USA
| | - Charles Limouse
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | - Kelsey A Fryer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA.,Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Nicole A Teran
- Department of Genetics, Stanford University School of Medicine, Stanford, California 94305-5120, USA
| | - Kousik Sundararajan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| | - Rebecca Heald
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, California 94720-3200, USA
| | - Aaron F Straight
- Department of Biochemistry, Stanford University School of Medicine, Stanford, California 94305-5307, USA
| |
Collapse
|
4
|
Pesenti E, Liskovykh M, Okazaki K, Mallozzi A, Reid C, Abad MA, Jeyaprakash AA, Kouprina N, Larionov V, Masumoto H, Earnshaw WC. Analysis of Complex DNA Rearrangements during Early Stages of HAC Formation. ACS Synth Biol 2020; 9:3267-3287. [PMID: 33289546 PMCID: PMC7754191 DOI: 10.1021/acssynbio.0c00326] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human artificial chromosomes (HACs) are important tools for epigenetic engineering, for measuring chromosome instability (CIN), and for possible gene therapy. However, their use in the latter is potentially limited because the input HAC-seeding DNA can undergo an unpredictable series of rearrangements during HAC formation. As a result, after transfection and HAC formation, each cell clone contains a HAC with a unique structure that cannot be precisely predicted from the structure of the HAC-seeding DNA. Although it has been reported that these rearrangements can happen, the timing and mechanism of their formation has yet to be described. Here we synthesized a HAC-seeding DNA with two distinct structural domains and introduced it into HT1080 cells. We characterized a number of HAC-containing clones and subclones to track DNA rearrangements during HAC establishment. We demonstrated that rearrangements can occur early during HAC formation. Subsequently, the established HAC genomic organization is stably maintained across many cell generations. Thus, early stages in HAC formation appear to at least occasionally involve a process of DNA shredding and shuffling that resembles chromothripsis, an important hallmark of many cancer types. Understanding these events during HAC formation has critical implications for future efforts aimed at synthesizing and exploiting synthetic human chromosomes.
Collapse
Affiliation(s)
- Elisa Pesenti
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom,
| | - Mikhail Liskovykh
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Koei Okazaki
- Kazusa
DNA Research Institute, Kisarazu 292-0818, Japan
| | - Alessio Mallozzi
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | - Caitlin Reid
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | - Maria Alba Abad
- Wellcome
Trust Centre for Cell Biology, Edinburgh EH9 3BF, United Kingdom
| | | | - Natalay Kouprina
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Vladimir Larionov
- National
Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | | | |
Collapse
|
5
|
Ohzeki JI, Otake K, Masumoto H. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B. Exp Cell Res 2020; 389:111900. [PMID: 32044309 DOI: 10.1016/j.yexcr.2020.111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. Heterochromatin also assembles around centromere chromatin and forms a base that supports sister chromatid cohesion until anaphase begins. Both centromere chromatin and heterochromatin assemble on a centromeric DNA sequence, a highly repetitive sequence called alphoid DNA (α-satellite DNA) in humans. Alphoid DNA can form a de novo centromere and subsequent human artificial chromosome (HAC) when introduced into the human culture cells HT1080. HAC is maintained stably as a single chromosome independent of other human chromosomes. For de novo centromere assembly and HAC formation, the centromere protein CENP-B and its binding sites, CENP-B boxes, are required in the repeating units of alphoid DNA. CENP-B has multiple roles in de novo centromere chromatin assembly and stabilization and in heterochromatin formation upon alphoid DNA introduction into the cells. Here we review recent progress in human artificial chromosome construction and centromere/heterochromatin assembly and maintenance, focusing on the involvement of human centromere DNA and CENP-B protein.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan.
| |
Collapse
|
6
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
7
|
Kouprina N, Liskovykh M, Petrov N, Larionov V. Human artificial chromosome (HAC) for measuring chromosome instability (CIN) and identification of genes required for proper chromosome transmission. Exp Cell Res 2019; 387:111805. [PMID: 31877307 DOI: 10.1016/j.yexcr.2019.111805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Chromosomal instability (CIN) is one of the characteristics of cancer inherent for tumor initiation and progression, which is defined as a persistent, high rate of gain/loss of whole chromosomes. In the vast majority of human tumors the molecular basis of CIN remains unknown. The development of a conceptually simple colony color sectoring assay that measures yeast artificial chromosome (YAC) loss provided a powerful genetic tool to assess the rate of chromosome mis-segregation and also identified 937 yeast genes involved in this process. Similarly, a human artificial chromosome (HAC)-based assay has been recently developed and applied to quantify chromosome mis-segregation events in human cells. This assay allowed identification of novel human CIN genes in the library of protein kinases. Among them are PINK1, TRIO, IRAK1, PNCK, and TAOK1. The HAC-based assay may be applied to screen siRNA, shRNA and CRISPR-based libraries to identify the complete spectrum of CIN genes. This will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
8
|
Ling YH, Lin Z, Yuen KWY. Genetic and epigenetic effects on centromere establishment. Chromosoma 2019; 129:1-24. [PMID: 31781852 DOI: 10.1007/s00412-019-00727-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/24/2019] [Accepted: 10/10/2019] [Indexed: 01/19/2023]
Abstract
Endogenous chromosomes contain centromeres to direct equal chromosomal segregation in mitosis and meiosis. The location and function of existing centromeres is usually maintained through cell cycles and generations. Recent studies have investigated how the centromere-specific histone H3 variant CENP-A is assembled and replenished after DNA replication to epigenetically propagate the centromere identity. However, existing centromeres occasionally become inactivated, with or without change in underlying DNA sequences, or lost after chromosomal rearrangements, resulting in acentric chromosomes. New centromeres, known as neocentromeres, may form on ectopic, non-centromeric chromosomal regions to rescue acentric chromosomes from being lost, or form dicentric chromosomes if the original centromere is still active. In addition, de novo centromeres can form after chromatinization of purified DNA that is exogenously introduced into cells. Here, we review the phenomena of naturally occurring and experimentally induced new centromeres and summarize the genetic (DNA sequence) and epigenetic features of these new centromeres. We compare the characteristics of new and native centromeres to understand whether there are different requirements for centromere establishment and propagation. Based on our understanding of the mechanisms of new centromere formation, we discuss the perspectives of developing more stably segregating human artificial chromosomes to facilitate gene delivery in therapeutics and research.
Collapse
Affiliation(s)
- Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Zhongyang Lin
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Hong Kong.
| |
Collapse
|
9
|
Liskovykh M, Goncharov NV, Petrov N, Aksenova V, Pegoraro G, Ozbun LL, Reinhold WC, Varma S, Dasso M, Kumeiko V, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. A novel assay to screen siRNA libraries identifies protein kinases required for chromosome transmission. Genome Res 2019; 29:1719-1732. [PMID: 31515286 PMCID: PMC6771407 DOI: 10.1101/gr.254276.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/21/2019] [Indexed: 12/30/2022]
Abstract
One of the hallmarks of cancer is chromosome instability (CIN), which leads to aneuploidy, translocations, and other chromosome aberrations. However, in the vast majority of human tumors the molecular basis of CIN remains unknown, partly because not all genes controlling chromosome transmission have yet been identified. To address this question, we developed an experimental high-throughput imaging (HTI) siRNA assay that allows the identification of novel CIN genes. Our method uses a human artificial chromosome (HAC) expressing the GFP transgene. When this assay was applied to screen an siRNA library of protein kinases, we identified PINK1, TRIO, IRAK1, PNCK, and TAOK1 as potential novel genes whose knockdown induces various mitotic abnormalities and results in chromosome loss. The HAC-based assay can be applied for screening different siRNA libraries (cell cycle regulation, DNA damage response, epigenetics, and transcription factors) to identify additional genes involved in CIN. Identification of the complete spectrum of CIN genes will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Nikolay V. Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA;,School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vasilisa Aksenova
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Gianluca Pegoraro
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Laurent L. Ozbun
- High-Throughput Imaging Facility, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - William C. Reinhold
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sudhir Varma
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Mary Dasso
- Division of Molecular and Cellular Biology, National Institute for Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Vadim Kumeiko
- School of Biomedicine, Far Eastern Federal University, A.V. Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, 690000, Russia
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - William C. Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, United Kingdom
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
10
|
Kouprina N, Larionov V. TAR Cloning: Perspectives for Functional Genomics, Biomedicine, and Biotechnology. Mol Ther Methods Clin Dev 2019; 14:16-26. [PMID: 31276008 PMCID: PMC6586605 DOI: 10.1016/j.omtm.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Completion of the human genome sequence and recent advances in engineering technologies have enabled an unprecedented level of understanding of DNA variations and their contribution to human diseases and cellular functions. However, in some cases, long-read sequencing technologies do not allow determination of the genomic region carrying a specific mutation (e.g., a mutation located in large segmental duplications). Transformation-associated recombination (TAR) cloning allows selective, most accurate, efficient, and rapid isolation of a given genomic fragment or a full-length gene from simple and complex genomes. Moreover, this method is the only way to simultaneously isolate the same genomic region from multiple individuals. As such, TAR technology is currently in a leading position to create a library of the individual genes that comprise the human genome and physically characterize the sites of chromosomal alterations (copy number variations [CNVs], inversions, translocations) in the human population, associated with the predisposition to different diseases, including cancer. It is our belief that such a library and analysis of the human genome will be of great importance to the growing field of gene therapy, new drug design methods, and genomic research. In this review, we detail the motivation for TAR cloning for human genome studies, biotechnology, and biomedicine, discuss the recent progress of some TAR-based projects, and describe how TAR technology in combination with HAC (human artificial chromosome)-based and CRISPR-based technologies may contribute in the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
11
|
McNulty SM, Sullivan BA. Going the distance: Neocentromeres make long-range contacts with heterochromatin. J Cell Biol 2019; 218:5-7. [PMID: 30538139 PMCID: PMC6314541 DOI: 10.1083/jcb.201811172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neocentromeres are ectopic centromeres that form at noncanonical, usually nonrepetitive, genomic locations. Nishimura et al. (2019. J. Cell Biol. https://doi.org/10.1083/jcb.201805003) explore the three-dimensional architecture of vertebrate neocentromeres, leading to a model for centromere function and maintenance via nuclear clustering with heterochromatin.
Collapse
Affiliation(s)
- Shannon M McNulty
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, Durham, NC
| | - Beth A Sullivan
- Department of Molecular Genetics and Microbiology, Division of Human Genetics, Duke University Medical Center, Durham, NC
| |
Collapse
|
12
|
Kouprina N, Petrov N, Molina O, Liskovykh M, Pesenti E, Ohzeki JI, Masumoto H, Earnshaw WC, Larionov V. Human Artificial Chromosome with Regulated Centromere: A Tool for Genome and Cancer Studies. ACS Synth Biol 2018; 7:1974-1989. [PMID: 30075081 PMCID: PMC6154217 DOI: 10.1021/acssynbio.8b00230] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Since their description in the late 1990s, Human Artificial Chromosomes (HACs) bearing functional kinetochores have been considered as promising systems for gene delivery and expression. More recently a HAC assembled from a synthetic alphoid DNA array has been exploited in studies of centromeric chromatin and in assessing the impact of different epigenetic modifications on kinetochore structure and function in human cells. This HAC was termed the alphoidtetO-HAC, as the synthetic monomers each contained a tetO sequence in place of the CENP-B box that can be targeted specifically with tetR-fusion proteins. Studies in which the kinetochore chromatin of the alphoidtetO-HAC was specifically modified, revealed that heterochromatin is incompatible with centromere function and that centromeric transcription is important for centromere assembly and maintenance. In addition, the alphoidtetO-HAC was modified to carry large gene inserts that are expressed in target cells under conditions that recapitulate the physiological regulation of endogenous loci. Importantly, the phenotypes arising from stable gene expression can be reversed when cells are "cured" of the HAC by inactivating its kinetochore in proliferating cell populations, a feature that provides a control for phenotypic changes attributed to expression of HAC-encoded genes. AlphoidtetO-HAC-based technology has also been used to develop new drug screening and assessment strategies to manipulate the CIN phenotype in cancer cells. In summary, the alphoidtetO-HAC is proving to be a versatile tool for studying human chromosome transactions and structure as well as for genome and cancer studies.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| | - Nikolai Petrov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Oscar Molina
- Josep
Carreras Leukaemia Research Institute, School of Medicine, University
of Barcelona, Casanova 143, 08036 Barcelona, Spain
| | - Mikhail Liskovykh
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States
| | - Elisa Pesenti
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Jun-ichirou Ohzeki
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan
| | - Hiroshi Masumoto
- Laboratory
of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d Japan,E-mail: . Tel: +81-438-52-395
| | - William C. Earnshaw
- Wellcome
Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland,E-mail: . Tel: +44-(0)131-650-7101
| | - Vladimir Larionov
- Developmental
Therapeutics Branch, National Cancer Institute,
NIH, Bethesda, Maryland 20892, United
States,E-mail: . Tel: +1-240-760-7325
| |
Collapse
|
13
|
Zhu J, Cheng KCL, Yuen KWY. Histone H3K9 and H4 Acetylations and Transcription Facilitate the Initial CENP-A HCP-3 Deposition and De Novo Centromere Establishment in Caenorhabditis elegans Artificial Chromosomes. Epigenetics Chromatin 2018; 11:16. [PMID: 29653589 PMCID: PMC5898018 DOI: 10.1186/s13072-018-0185-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 03/29/2018] [Indexed: 01/02/2023] Open
Abstract
Background The centromere is the specialized chromatin region that directs chromosome segregation. The kinetochore assembles on the centromere, attaching chromosomes to microtubules in mitosis. The centromere position is usually maintained through cell cycles and generations. However, new centromeres, known as neocentromeres, can occasionally form on ectopic regions when the original centromere is inactivated or lost due to chromosomal rearrangements. Centromere repositioning can occur during evolution. Moreover, de novo centromeres can form on exogenously transformed DNA in human cells at a low frequency, which then segregates faithfully as human artificial chromosomes (HACs). How centromeres are maintained, inactivated and activated is unclear. A conserved histone H3 variant, CENP-A, epigenetically marks functional centromeres, interspersing with H3. Several histone modifications enriched at centromeres are required for centromere function, but their role in new centromere formation is less clear. Studying the mechanism of new centromere formation has been challenging because these events are difficult to detect immediately, requiring weeks for HAC selection. Results DNA injected into the Caenorhabditis elegans gonad can concatemerize to form artificial chromosomes (ACs) in embryos, which first undergo passive inheritance, but soon autonomously segregate within a few cell cycles, more rapidly and frequently than HACs. Using this in vivo model, we injected LacO repeats DNA, visualized ACs by expressing GFP::LacI, and monitored equal AC segregation in real time, which represents functional centromere formation. Histone H3K9 and H4 acetylations are enriched on new ACs when compared to endogenous chromosomes. By fusing histone deacetylase HDA-1 to GFP::LacI, we tethered HDA-1 to ACs specifically, reducing AC histone acetylations, reducing AC equal segregation frequency, and reducing initial kinetochroe protein CENP-AHCP−3 and NDC-80 deposition, indicating that histone acetylations facilitate efficient centromere establishment. Similarly, inhibition of RNA polymerase II-mediated transcription also delays initial CENP-AHCP-3 loading. Conclusions Acetylated histones on chromatin and transcription can create an open chromatin environment, enhancing nucleosome disassembly and assembly, and potentially contribute to centromere establishment. Alternatively, acetylation of soluble H4 may stimulate the initial deposition of CENP-AHCP−3-H4 nucleosomes. Our findings shed light on the mechanism of de novo centromere activation. Electronic supplementary material The online version of this article (10.1186/s13072-018-0185-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Kevin Chi Lok Cheng
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Kadoorie Biological Sciences Building, Pokfulam Road, Pokfulam, Hong Kong.
| |
Collapse
|
14
|
Lee NCO, Kim JH, Petrov NS, Lee HS, Masumoto H, Earnshaw WC, Larionov V, Kouprina N. Method to Assemble Genomic DNA Fragments or Genes on Human Artificial Chromosome with Regulated Kinetochore Using a Multi-Integrase System. ACS Synth Biol 2018; 7:63-74. [PMID: 28799737 PMCID: PMC5778389 DOI: 10.1021/acssynbio.7b00209] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
![]()
The production of cells capable of carrying multiple transgenes
to Mb-size genomic loci has multiple applications in biomedicine and
biotechnology. In order to achieve this goal, three key steps are
required: (i) cloning of large genomic segments; (ii) insertion of
multiple DNA blocks at a precise location and (iii) the capability
to eliminate the assembled region from cells. In this study, we designed
the iterative integration system (IIS) that utilizes recombinases
Cre, ΦC31 and ΦBT1, and combined it with a human artificial
chromosome (HAC) possessing a regulated kinetochore (alphoidtetO-HAC). We have demonstrated that the IIS-alphoidtetO-HAC
system is a valuable genetic tool by reassembling a functional gene
from multiple segments on the HAC. IIS-alphoidtetO-HAC
has several notable advantages over other artificial chromosome-based
systems. This includes the potential to assemble an unlimited number
of genomic DNA segments; a DNA assembly process that leaves only a
small insertion (<60 bp) scar between adjacent DNA, allowing genes
reassembled from segments to be spliced correctly; a marker exchange
system that also changes cell color, and counter-selection markers
at each DNA insertion step, simplifying selection of correct clones;
and presence of an error proofing mechanism to remove cells with misincorporated
DNA segments, which improves the integrity of assembly. In addition,
the IIS-alphoidtetO-HAC carrying a locus of interest is
removable, offering the unique possibility to revert the cell line
to its pretransformed state and compare the phenotypes of human cells
with and without a functional copy of a gene(s). Thus, IIS-alphoidtetO-HAC allows investigation of complex biomedical pathways,
gene(s) regulation, and has the potential to engineer synthetic chromosomes
with a predetermined set of genes.
Collapse
Affiliation(s)
- Nicholas C. O. Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Jung-Hyun Kim
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Nikolai S. Petrov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hee-Sheung Lee
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - William C. Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3JR, Scotland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, Maryland 20892, United States
| |
Collapse
|
15
|
Using human artificial chromosomes to study centromere assembly and function. Chromosoma 2017; 126:559-575. [DOI: 10.1007/s00412-017-0633-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/12/2017] [Accepted: 06/13/2017] [Indexed: 12/13/2022]
|
16
|
Erlendson AA, Friedman S, Freitag M. A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0054-2017. [PMID: 28752814 PMCID: PMC5536859 DOI: 10.1128/microbiolspec.funk-0054-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Chromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Neurospora crassa. Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres. We summarize the state of recent chromatin research that explains what is required for normal function of these specialized chromosomal regions in different fungi, with an emphasis on the silencing mechanism associated with subtelomeric regions, initiated by sirtuin histone deacetylases and histone H3 lysine 27 (H3K27) methyltransferases. We explore mechanisms for the appearance of "accessory" or "conditionally dispensable" chromosomes and contrast what has been learned from studies on genome-wide chromosome conformation capture in S. cerevisiae, S. pombe, N. crassa, and Trichoderma reesei. While most of the current knowledge is based on work in a handful of genetically and biochemically tractable model organisms, we suggest where major knowledge gaps remain to be closed. Fungi will continue to serve as facile organisms to uncover the basic processes of life because they make excellent model organisms for genetics, biochemistry, cell biology, and evolutionary biology.
Collapse
Affiliation(s)
- Allyson A. Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
17
|
Wada N, Kazuki Y, Kazuki K, Inoue T, Fukui K, Oshimura M. Maintenance and Function of a Plant Chromosome in Human Cells. ACS Synth Biol 2017; 6:301-310. [PMID: 27696824 DOI: 10.1021/acssynbio.6b00180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Replication, segregation, gene expression, and inheritance are essential features of all eukaryotic chromosomes. To delineate the extent of conservation of chromosome functions between humans and plants during evolutionary history, we have generated the first human cell line containing an Arabidopsis chromosome. The Arabidopsis chromosome was mitotically stable in hybrid cells following cell division, and initially existed as a translocated chromosome. During culture, the translocated chromosomes then converted to two types of independent plant chromosomes without human DNA sequences, with reproducibility. One pair of localization signals of CENP-A, a marker of functional centromeres was detected in the Arabidopsis genomic region in independent plant chromosomes. These results suggest that the chromosome maintenance system was conserved between human and plants. Furthermore, the expression of plant endogenous genes was observed in the hybrid cells, implicating that the plant chromosomal region existed as euchromatin in a human cell background and the gene expression system is conserved between two organisms. The present study suggests that the essential chromosome functions are conserved between evolutionarily distinct organisms such as humans and plants. Systematic analyses of hybrid cells may lead to the production of a shuttle vector between animal and plant, and a platform for the genome writing.
Collapse
Affiliation(s)
| | | | | | | | - Kiichi Fukui
- Department
of Biotechnology, Graduate School of Engineering, Osaka University, 565-0871, Osaka, Japan
| | | |
Collapse
|
18
|
Friedman S, Freitag M. Centrochromatin of Fungi. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2017; 56:85-109. [PMID: 28840234 DOI: 10.1007/978-3-319-58592-5_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The centromere is an essential chromosomal locus that dictates the nucleation point for assembly of the kinetochore and subsequent attachment of spindle microtubules during chromosome segregation. Research over the last decades demonstrated that centromeres are defined by a combination of genetic and epigenetic factors. Recent work showed that centromeres are quite diverse and flexible and that many types of centromere sequences and centromeric chromatin ("centrochromatin") have evolved. The kingdom of the fungi serves as an outstanding example of centromere plasticity, including organisms with centromeres as diverse as 0.15-300 kb in length, and with different types of chromatin states for most species examined thus far. Some of the species in the less familiar taxa provide excellent opportunities to help us better understand centromere biology in all eukaryotes, which may improve treatment options against fungal infection, and biotechnologies based on fungi. This review summarizes the current knowledge of fungal centromeres and centrochromatin, including an outlook for future research.
Collapse
Affiliation(s)
- Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Bldg, Corvallis, OR, 97331, USA
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, 2011 ALS Bldg, Corvallis, OR, 97331, USA.
| |
Collapse
|
19
|
Abstract
The enabling technologies of synthetic biology are opening up new opportunities for engineering and enhancement of mammalian cells. This will stimulate diverse applications in many life science sectors such as regenerative medicine, development of biosensing cell lines, therapeutic protein production, and generation of new synthetic genetic regulatory circuits. Harnessing the full potential of these new engineering-based approaches requires the design and assembly of large DNA constructs-potentially up to chromosome scale-and the effective delivery of these large DNA payloads to the host cell. Random integration of large transgenes, encoding therapeutic proteins or genetic circuits into host chromosomes, has several drawbacks such as risks of insertional mutagenesis, lack of control over transgene copy-number and position-specific effects; these can compromise the intended functioning of genetic circuits. The development of a system orthogonal to the endogenous genome is therefore beneficial. Mammalian artificial chromosomes (MACs) are functional, add-on chromosomal elements, which behave as normal chromosomes-being replicating and portioned to daughter cells at each cell division. They are deployed as useful gene expression vectors as they remain independent from the host genome. MACs are maintained as a single-copy and can accommodate multiple gene expression cassettes of, in theory, unlimited DNA size (MACs up to 10 megabases have been constructed). MACs therefore enabled control over ectopic gene expression and represent an excellent platform to rapidly prototype and characterize novel synthetic gene circuits without recourse to engineering the host genome. This review describes the obstacles synthetic biologists face when working with mammalian systems and how the development of improved MACs can overcome these-particularly given the spectacular advances in DNA synthesis and assembly that are fuelling this research area.
Collapse
Affiliation(s)
- Andrea Martella
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| | - Steven M Pollard
- MRC Centre for Regenerative Medicine, The University of Edinburgh , Edinburgh bioQuarter, 5 Little France Drive, Edinburgh, EH16 4UU, U.K
| | - Junbiao Dai
- Key Laboratory of Industrial Biocatalysis (Ministry of Education), Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University , Beijing 100084, China
| | - Yizhi Cai
- School of Biological Sciences, The University of Edinburgh , The King's Buildings, Edinburgh EH9 3BF, U.K
| |
Collapse
|
20
|
Ohzeki JI, Shono N, Otake K, Martins NMC, Kugou K, Kimura H, Nagase T, Larionov V, Earnshaw WC, Masumoto H. KAT7/HBO1/MYST2 Regulates CENP-A Chromatin Assembly by Antagonizing Suv39h1-Mediated Centromere Inactivation. Dev Cell 2016; 37:413-27. [PMID: 27270040 PMCID: PMC4906249 DOI: 10.1016/j.devcel.2016.05.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Revised: 04/08/2016] [Accepted: 05/09/2016] [Indexed: 01/01/2023]
Abstract
Centromere chromatin containing histone H3 variant CENP-A is required for accurate chromosome segregation as a foundation for kinetochore assembly. Human centromere chromatin assembles on a part of the long α-satellite (alphoid) DNA array, where it is flanked by pericentric heterochromatin. Heterochromatin spreads into adjacent chromatin and represses gene expression, and it can antagonize centromere function or CENP-A assembly. Here, we demonstrate an interaction between CENP-A assembly factor M18BP1 and acetyltransferase KAT7/HBO1/MYST2. Knocking out KAT7 in HeLa cells reduced centromeric CENP-A assembly. Mitotic chromosome misalignment and micronuclei formation increased in the knockout cells and were enhanced when the histone H3-K9 trimethylase Suv39h1 was overproduced. Tethering KAT7 to an ectopic alphoid DNA integration site removed heterochromatic H3K9me3 modification and was sufficient to stimulate new CENP-A or histone H3.3 assembly. Thus, KAT7-containing acetyltransferases associating with the Mis18 complex provides competence for histone turnover/exchange activity on alphoid DNA and prevents Suv39h1-mediated heterochromatin invasion into centromeres.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Kazuto Kugou
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, Kisarazu 292-0818, Japan
| | - Vladimir Larionov
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.
| |
Collapse
|
21
|
Transformation-associated recombination (TAR) cloning for genomics studies and synthetic biology. Chromosoma 2016; 125:621-32. [PMID: 27116033 DOI: 10.1007/s00412-016-0588-3] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 03/22/2016] [Accepted: 03/29/2016] [Indexed: 12/25/2022]
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool for isolation and manipulation of large DNA molecules. The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. So far, TAR cloning is the only method available to selectively recover chromosomal segments up to 300 kb in length from complex and simple genomes. In addition, TAR cloning allows the assembly and cloning of entire microbe genomes up to several Mb as well as engineering of large metabolic pathways. In this review, we summarize applications of TAR cloning for functional/structural genomics and synthetic biology.
Collapse
|
22
|
Rošić S, Erhardt S. No longer a nuisance: long non-coding RNAs join CENP-A in epigenetic centromere regulation. Cell Mol Life Sci 2016; 73:1387-98. [PMID: 26748759 PMCID: PMC11108473 DOI: 10.1007/s00018-015-2124-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/08/2015] [Accepted: 12/17/2015] [Indexed: 01/02/2023]
Abstract
Centromeres represent the basis for kinetochore formation, and are essential for proper chromosome segregation during mitosis. Despite these essential roles, centromeres are not defined by specific DNA sequences, but by epigenetic means. The histone variant CENP-A controls centromere identity epigenetically and is essential for recruiting kinetochore components that attach the chromosomes to the mitotic spindle during mitosis. Recently, a new player in centromere regulation has emerged: long non-coding RNAs transcribed from repetitive regions of centromeric DNA function in regulating centromeres epigenetically. This review summarizes recent findings on the essential roles that transcription, pericentromeric transcripts, and centromere-derived RNAs play in centromere biology.
Collapse
Affiliation(s)
- Silvana Rošić
- Medical Research Council Clinical Sciences Centre, Imperial College London, London, UK
| | - Sylvia Erhardt
- ZMBH, DKFZ-ZMBH-Alliance and CellNetworks Excellence Cluster, University of Heidelberg, Im Neuenheimer Feld 282, 69120, Heidelberg, Germany.
| |
Collapse
|
23
|
Shono N, Ohzeki JI, Otake K, Martins NMC, Nagase T, Kimura H, Larionov V, Earnshaw WC, Masumoto H. CENP-C and CENP-I are key connecting factors for kinetochore and CENP-A assembly. J Cell Sci 2015; 128:4572-87. [PMID: 26527398 PMCID: PMC4696500 DOI: 10.1242/jcs.180786] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Accepted: 10/26/2015] [Indexed: 12/18/2022] Open
Abstract
Although it is generally accepted that chromatin containing the histone H3 variant CENP-A is an epigenetic mark maintaining centromere identity, the pathways leading to the formation and maintenance of centromere chromatin remain unclear. We previously generated human artificial chromosomes (HACs) whose centromeres contain a synthetic alpha-satellite (alphoid) DNA array containing the tetracycline operator (alphoid(tetO)). We also obtained cell lines bearing the alphoid(tetO) array at ectopic integration sites on chromosomal arms. Here, we have examined the regulation of CENP-A assembly at centromeres as well as de novo assembly on the ectopic arrays by tethering tetracycline repressor (tetR) fusions of substantial centromeric factors and chromatin modifiers. This analysis revealed four classes of factors that influence CENP-A assembly. Interestingly, many kinetochore structural components induced de novo CENP-A assembly at the ectopic site. We showed that these components work by recruiting CENP-C and subsequently recruiting M18BP1. Furthermore, we found that CENP-I can also recruit M18BP1 and, as a consequence, enhances M18BP1 assembly on centromeres in the downstream of CENP-C. Thus, we suggest that CENP-C and CENP-I are key factors connecting kinetochore to CENP-A assembly.
Collapse
Affiliation(s)
- Nobuaki Shono
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Jun-ichirou Ohzeki
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Nuno M C Martins
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Takahiro Nagase
- Public Relations Team, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| | - Hiroshi Kimura
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama 226-8501, Japan
| | - Vladimir Larionov
- Developmental Therapeutic Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JR, UK
| | - Hiroshi Masumoto
- Laboratory of Cell Engineering, Department of Frontier Research, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, Chiba 292-0818, Japan
| |
Collapse
|