1
|
Oliveira JIN, Cabral-de-Mello DC, Valente GT, Martins C. Transcribing the enigma: the B chromosome as a territory of uncharted RNAs. Genetics 2024; 227:iyae026. [PMID: 38513121 DOI: 10.1093/genetics/iyae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/10/2024] [Indexed: 03/23/2024] Open
Abstract
B chromosomes are supernumerary elements found in several groups of eukaryotes, including fungi, plants, and animals. Typically, these chromosomes either originate from their hosts through errors in meiosis or interspecifically through horizontal transfer. While many B chromosomes are primarily heterochromatic and possess a low number of coding genes, these additional elements are still capable of transcribing sequences and exerting influence on the expression of host genes. How B chromosomes escape elimination and which impacts can be promoted in the cell always intrigued the cytogeneticists. In pursuit of understanding the behavior and functional impacts of these extra elements, cytogenetic studies meet the advances of molecular biology, incorporating various techniques into investigating B chromosomes from a functional perspective. In this review, we present a timeline of studies investigating B chromosomes and RNAs, highlighting the advances and key findings throughout their history. Additionally, we identified which RNA classes are reported in the B chromosomes and emphasized the necessity for further investigation into new perspectives on the B chromosome functions. In this context, we present a phylogenetic tree that illustrates which branches either report B chromosome presence or have functional RNA studies related to B chromosomes. We propose investigating other unexplored RNA classes and conducting functional analysis in conjunction with cytogenetic studies to enhance our understanding of the B chromosome from an RNA perspective.
Collapse
Affiliation(s)
| | - Diogo C Cabral-de-Mello
- Departamento de Biologia Geral e Aplicada, Instituto de Biociências, Universidade Estadual Paulista (UNESP), Rio Claro 13506-900, Brazil
| | - Guilherme T Valente
- Applied Biotechnology Laboratory, Clinical Hospital of Botucatu Medical School, Botucatu 18618-687, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu 18618-689, Brazil
| |
Collapse
|
2
|
Oliveira JIN, Cardoso AL, Wolf IR, de Oliveira RA, Martins C. First characterization of PIWI-interacting RNA clusters in a cichlid fish with a B chromosome. BMC Biol 2022; 20:204. [PMID: 36127679 PMCID: PMC9490952 DOI: 10.1186/s12915-022-01403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes are extra elements found in several eukaryote species. Usually, they do not express a phenotype in the host. However, advances in bioinformatics over the last decades have allowed us to describe several genes and molecular functions related to B chromosomes. These advances enable investigations of the relationship between the B chromosome and the host to understand how this element has been preserved in genomes. However, considering that transposable elements (TEs) are highly abundant in this supernumerary chromosome, there is a lack of knowledge concerning the dynamics of TE control in B-carrying cells. Thus, the present study characterized PIWI-interacting RNA (piRNA) clusters and pathways responsible for silencing the mobilization of TEs in gonads of the cichlid fish Astatotilapia latifasciata carrying the B chromosome. RESULTS Through small RNA-seq and genome assembly, we predicted and annotated piRNA clusters in the A. latifasciata genome for the first time. We observed that these clusters had biased expression related to sex and the presence of the B chromosome. Furthermore, three piRNA clusters, named curupira, were identified in the B chromosome. Two of them were expressed exclusively in gonads of samples with the B chromosome. The composition of these curupira sequences was derived from LTR, LINE, and DNA elements, representing old and recent transposition events in the A. latifasciata genome and the B chromosome. The presence of the B chromosome also affected the expression of piRNA pathway genes. The mitochondrial cardiolipin hydrolase-like (pld6) gene is present in the B chromosome, as previously reported, and an increase in its expression was detected in gonads with the B chromosome. CONCLUSIONS Due to the high abundance of TEs in the B chromosome, it was possible to investigate the origin of piRNA from these jumping genes. We hypothesize that the B chromosome has evolved its own genomic guardians to prevent uncontrolled TE mobilization. Furthermore, we also detected an expression bias in the presence of the B chromosome over A. latifasciata piRNA clusters and pathway genes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Rogério Antônio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
3
|
Silva DMZA, Castro JP, Goes CAG, Utsunomia R, Vidal MR, Nascimento CN, Lasmar LF, Paim FG, Soares LB, Oliveira C, Porto-Foresti F, Artoni RF, Foresti F. B Chromosomes in Psalidodon scabripinnis (Characiformes, Characidae) Species Complex. Animals (Basel) 2022; 12:2174. [PMID: 36077895 PMCID: PMC9454733 DOI: 10.3390/ani12172174] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 08/19/2022] [Accepted: 08/19/2022] [Indexed: 11/24/2022] Open
Abstract
B chromosomes are extra-genomic components of cells found in individuals and in populations of some eukaryotic organisms. They have been described since the first observations of chromosomes, but several aspects of their biology remain enigmatic. Despite being present in hundreds of fungi, plants, and animal species, only a small number of B chromosomes have been investigated through high-throughput analyses, revealing the remarkable mechanisms employed by these elements to ensure their maintenance. Populations of the Psalidodon scabripinnis species complex exhibit great B chromosome diversity, making them a useful material for various analyses. In recent years, important aspects of their biology have been revealed. Here, we review these studies presenting a comprehensive view of the B chromosomes in the P. scabripinnis complex and a new hypothesis regarding the role of the B chromosome in the speciation process.
Collapse
Affiliation(s)
- Duílio M. Z. A. Silva
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Jonathan P. Castro
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Caio A. G. Goes
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Ricardo Utsunomia
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
- Laboratory of Fish Genetics, Department of Genetics, Institute of Biological Sciences and Health, Federal Rural University of Rio de Janeiro, Seropedica 23890-000, RJ, Brazil
| | - Mateus R. Vidal
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Cristiano N. Nascimento
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Lucas F. Lasmar
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fabilene G. Paim
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Letícia B. Soares
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Claudio Oliveira
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| | - Fábio Porto-Foresti
- Laboratory of Fish Genetics, Department of Biological Sciences, Faculty of Sciences, São Paulo State University, Bauru 17033-360, SP, Brazil
| | - Roberto F. Artoni
- Post-Graduate Program in Evolutionary Genetics and Molecular Biology, Department of Genetics and Evolution, Federal University of Sao Carlos, Sao Carlos 13565-905, SP, Brazil
- Laboratory of Evolutionary Genetics, Department of Structural, Molecular and Genetic Biology, State University of Ponta Grossa, Ponta Grossa 84030-900, PR, Brazil
| | - Fausto Foresti
- Laboratory of Biology and Genetics of Fishes, Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University, Botucatu 18618-970, SP, Brazil
| |
Collapse
|
4
|
Cardoso AL, Venturelli NB, da Cruz I, de Sá Patroni FM, de Moraes D, de Oliveira RA, Benavente R, Martins C. Meiotic behavior, transmission and active genes of B chromosomes in the cichlid Astatotilapia latifasciata: new clues about nature, evolution and maintenance of accessory elements. Mol Genet Genomics 2022; 297:1151-1167. [PMID: 35704117 DOI: 10.1007/s00438-022-01911-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 05/24/2022] [Indexed: 12/23/2022]
Abstract
Supernumerary B chromosomes (Bs) are dispensable genetic elements widespread in eukaryotes and are poorly understood mainly in relation to mechanisms of maintenance and transmission. The cichlid Astatotilapia latifasciata can harbor Bs in a range of 0 (named B -) and 1-2 (named B +). The B in A. latifasciata is rich in several classes of repetitive DNA sequences, contains protein coding genes, and affects hosts in diverse ways, including sex-biased effects. To advance in the knowledge about the mechanisms of maintenance and transmission of B chromosomes in A. latifasciata, here, we studied the meiotic behavior in males and transmission rates of A. latifasciata B chromosome. We also analyzed structurally and functionally the predicted B chromosome copies of the cell cycle genes separin-like, tubb1-like and kif11-like. We identified in the meiotic structure relative to the B chromosome the presence of proteins associated with Synaptonemal Complex organization (SMC3, SYCP1 and SYCP3) and found that the B performs self-pairing. These data suggest that isochromosome formation was a step during B chromosome evolution and this element is in a stage of diversification of the two arms keeping the self-pairing behavior to protect the A chromosome complement of negative effects of recombination. Moreover, we observed no occurrence of B-drive and confirmed the presence of cell cycle genes copies in the B chromosome and their transcription in encephalon, muscle and gonads, which can indicates beneficial effects to hosts and contribute to B maintenance.
Collapse
Affiliation(s)
- Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Natália Bortholazzi Venturelli
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Irene da Cruz
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Fábio Malta de Sá Patroni
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Diogo de Moraes
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil
| | - Rogério Antonio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, Brazil
| | - Ricardo Benavente
- Department of Cell and Developmental Biology, Biocenter, University of Würzburg, 97074, Würzburg, Germany
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, Sao Paulo State University, UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
5
|
B Chromosomes’ Sequences in Yellow-Necked Mice Apodemus flavicollis—Exploring the Transcription. Life (Basel) 2021; 12:life12010050. [PMID: 35054443 PMCID: PMC8781039 DOI: 10.3390/life12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/17/2022] Open
Abstract
B chromosomes (Bs) are highly polymorphic additional chromosomes in the genomes of many species. Due to the dispensability of Bs and the lack of noticeable phenotypic effects in their carriers, they were considered genetically inert for a long time. Recent studies on Bs in Apodemus flavicollis revealed their genetic composition, potential origin, and spatial organization in the interphase nucleus. Surprisingly, the genetic content of Bs in this species is preserved in all studied samples, even in geographically distinct populations, indicating its biological importance. Using RT-PCR we studied the transcription activity of three genes (Rraga, Haus6, and Cenpe) previously identified on Bs in A. flavicollis. We analysed mRNA isolated from spleen tissues of 34 animals harboring different numbers of Bs (0–3).The products of transcriptional activity of the analysed sequences differ in individuals with and without Bs. We recorded B-genes and/or genes from the standard genome in the presence of Bs, showing sex-dependent higher levels of transcriptional activity. Furthermore, the transcriptional activity of Cenpe varied with the age of the animals differently in the group with and without Bs. With aging, the amount of product was only found to significantly decrease in B carriers. The potential biological significance of all these differences is discussed in the paper.
Collapse
|
6
|
Nascimento-Oliveira JI, Fantinatti BEA, Wolf IR, Cardoso AL, Ramos E, Rieder N, de Oliveira R, Martins C. Differential expression of miRNAs in the presence of B chromosome in the cichlid fish Astatotilapia latifasciata. BMC Genomics 2021; 22:344. [PMID: 33980143 PMCID: PMC8117508 DOI: 10.1186/s12864-021-07651-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/23/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND B chromosomes (Bs) are extra elements observed in diverse eukaryotes, including animals, plants and fungi. Although Bs were first identified a century ago and have been studied in hundreds of species, their biology is still enigmatic. Recent advances in omics and big data technologies are revolutionizing the B biology field. These advances allow analyses of DNA, RNA, proteins and the construction of interactive networks for understanding the B composition and behavior in the cell. Several genes have been detected on the B chromosomes, although the interaction of B sequences and the normal genome remains poorly understood. RESULTS We identified 727 miRNA precursors in the A. latifasciata genome, 66% which were novel predicted sequences that had not been identified before. We were able to report the A. latifasciata-specific miRNAs and common miRNAs identified in other fish species. For the samples carrying the B chromosome (B+), we identified 104 differentially expressed (DE) miRNAs that are down or upregulated compared to samples without B chromosome (B-) (p < 0.05). These miRNAs share common targets in the brain, muscle and gonads. These targets were used to construct a protein-protein-miRNA network showing the high interaction between the targets of differentially expressed miRNAs in the B+ chromosome samples. Among the DE-miRNA targets there are protein-coding genes reported for the B chromosome that are present in the protein-protein-miRNA network. Additionally, Gene Ontology (GO) terms related to nuclear matrix organization and response to stimulus are exclusive to DE miRNA targets of B+ samples. CONCLUSIONS This study is the first to report the connection of B chromosomes and miRNAs in a vertebrate species. We observed that the B chromosome impacts the miRNAs expression in several tissues and these miRNAs target several mRNAs involved with important biological processes.
Collapse
Affiliation(s)
- Jordana Inácio Nascimento-Oliveira
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | | | - Ivan Rodrigo Wolf
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Adauto Lima Cardoso
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| | - Nathalie Rieder
- Faculty of Mathematics and Natural Sciences, University of Bonn, Bonn, Germany
| | - Rogerio de Oliveira
- Department of Biostatistics, Plant Biology, Parasitology and Zoology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Structural and Functional Biology, Institute of Bioscience at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
7
|
Martins C, Jehangir M. A genomic glimpse of B chromosomes in cichlids. Genes Genomics 2021; 43:199-208. [PMID: 33547625 DOI: 10.1007/s13258-021-01049-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 01/25/2023]
Abstract
BACKGROUND B chromosomes (Bs) are extra karyotype elements in addition to A chromosomes and are found in all major eukaryotic taxa. Among hundreds of investigated species, cichlid fishes have emerged as an interesting group of model and have contributed to unravel the complex biology of B chromosome. OBJECTIVE We review the current state of knowledge on B chromosome investigation in cichlid fish and discuss the recent genomic advances over gene and sequences hunting on Bs and their impact on the current concept of B chromosomes. RESULTS The Bs of cichlids have been under the subject of classical cytogenetics and high scale DNA, RNA and epigenetics analysis and a list of B chromosome genes and functional sequences has been generated. B chromosomes of cichlids are restricted to females in some species and are enriched with genes, relics of genes, transposable elements and sequences transcribing for many significant biological functions. Diverse potentially functional sequences have been described in the B chromosome of cichlids and could influence important biological characteristics as well seems to affect transcription and epigenetic modifications of the whole genome. CONCLUSION One of the most enigmatic characteristics of Bs in cichlids is their genic content related to cell cycle and chromosome structure, and their influence over sex rates. The relationship of Bs with cell cycle and sex determination looks like to be connected with the drive of the Bs during cell divisions.
Collapse
Affiliation(s)
- Cesar Martins
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil.
| | - Maryam Jehangir
- Department of Structural and Functional Biology, Institute of Biosciences at Botucatu, São Paulo State University (UNESP), Botucatu, SP, 18618-689, Brazil
| |
Collapse
|
8
|
Serrano-Freitas ÉA, Silva DMZA, Ruiz-Ruano FJ, Utsunomia R, Araya-Jaime C, Oliveira C, Camacho JPM, Foresti F. Satellite DNA content of B chromosomes in the characid fish Characidium gomesi supports their origin from sex chromosomes. Mol Genet Genomics 2019; 295:195-207. [PMID: 31624915 DOI: 10.1007/s00438-019-01615-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 10/01/2019] [Indexed: 12/28/2022]
Abstract
The origin of supernumerary (B) chromosomes is clearly conditioned by their ancestry from the standard (A) chromosomes. Sequence similarity between A and B chromosomes is thus crucial to determine B chromosome origin. For this purpose, we compare here the DNA sequences from A and B chromosomes in the characid fish Characidium gomesi using two main approaches. First, we found 59 satellite DNA (satDNA) families constituting the satellitome of this species and performed FISH analysis for 18 of them. This showed the presence of six satDNAs on the B chromosome: one shared with sex chromosomes and autosomes, two shared with sex chromosomes, one shared with autosomes and two being B-specific. This indicated that B chromosomes most likely arose from the sex chromosomes. Our second approach consisted of the analysis of five repetitive DNA families: 18S and 5S ribosomal DNA (rDNA), the H3 histone gene, U2 snDNA and the most abundant satDNA (CgoSat01-184) on DNA obtained from microdissected B chromosomes and from B-lacking genomes. PCR and sequence analysis of these repetitive sequences was successful for three of them (5S rDNA, H3 histone gene and CgoSat01-184), and sequence comparison revealed that DNA sequences obtained from the B chromosomes displayed higher identity with C. gomesi genomic DNA than with those obtained from other Characidium species. Taken together, our results support the intraspecific origin of B chromosomes in C. gomesi and point to sex chromosomes as B chromosome ancestors, which raises interesting prospects for future joint research on the genetic content of sex and B chromosomes in this species.
Collapse
Affiliation(s)
- Érica A Serrano-Freitas
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil.,Centro de Ciências Biológicas e da Saúde, Fundação Educacional de Penápolis, Funepe, Penápolis, SP, 16303-180, Brazil
| | - Duílio M Z A Silva
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil.
| | - Francisco J Ruiz-Ruano
- Departamento de Genética, Universidad de Granada, 18071, Granada, Spain.,Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, 75236, Uppsala, Sweden
| | - Ricardo Utsunomia
- Departamento de Genética, Instituto de Ciências Biológicas e da Saúde, ICBS, Universidade Federal Rural do Rio de Janeiro, Seropédica, RJ, 23897-000, Brazil
| | - Cristian Araya-Jaime
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, 1720256, La Serena, Chile.,Laboratorio de Genética y Citogenética Vegetal, Departamento de Biología, Universidad de La Serena, 1720256, La Serena, Chile
| | - Claudio Oliveira
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| | | | - Fausto Foresti
- Departamento de Morfologia, Instituto de Biociências de Botucatu, Universidade Estadual Paulista, UNESP, Distrito de Rubião Junior, Botucatu, SP, 18618-970, Brazil
| |
Collapse
|
9
|
Jehangir M, Ahmad SF, Cardoso AL, Ramos E, Valente GT, Martins C. De novo genome assembly of the cichlid fish Astatotilapia latifasciata reveals a higher level of genomic polymorphism and genes related to B chromosomes. Chromosoma 2019; 128:81-96. [PMID: 31115663 DOI: 10.1007/s00412-019-00707-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/27/2019] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Supernumerary B chromosomes (Bs) are accessory elements to the regular chromosome set (As) and have been observed in a huge diversity of eukaryotic species. Although extensively investigated, the biological significance of Bs remains enigmatic. Here, we present de novo genome assemblies for the cichlid fish Astatotilapia latifasciata, a well-known model to study Bs. High coverage data with Illumina sequencing was obtained for males and females with 0B (B-), 1B, and 2B (B+) chromosomes to provide information regarding the diversity among these genomes. The draft assemblies comprised 771 Mb for the B- genome and 781 Mb for the B+ genome. Comparative analysis of the B+ and B- assemblies reveals syntenic discontinuity, duplicated blocks and several insertions, deletions, and inversions indicative of rearrangements in the B+ genome. Hundreds of transposable elements and 1546 protein coding sequences were annotated in the duplicated B+ regions. Our work contributes a list of thousands of genes harbored on the B chromosome, with functions in several biological processes, including the cell cycle.
Collapse
Affiliation(s)
- Maryam Jehangir
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Syed F Ahmad
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Adauto L Cardoso
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Erica Ramos
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil
| | - Guilherme T Valente
- Bioprocess and Biotechnology Department, Agronomical Science Faculty, Sao Paulo State University - UNESP, Botucatu, SP, Brazil
| | - Cesar Martins
- Department of Morphology, Institute of Bioscience at Botucatu, São Paulo State University - UNESP, Botucatu, SP, 18618-689, Brazil.
| |
Collapse
|
10
|
Cardoso AL, Fantinatti BEDA, Venturelli NB, Carmello BDO, de Oliveira RA, Martins C. Epigenetic DNA Modifications Are Correlated With B Chromosomes and Sex in the Cichlid Astatotilapia latifasciata. Front Genet 2019; 10:324. [PMID: 31031803 PMCID: PMC6474290 DOI: 10.3389/fgene.2019.00324] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 03/22/2019] [Indexed: 12/11/2022] Open
Abstract
Supernumerary B chromosomes are dispensable elements found in several groups of eukaryotes, and their impacts in host organisms are not clear. The cichlid fish Astatotilapia latifasciata presents one or two large metacentric B chromosomes. These elements affect the transcription of several classes of RNAs. Here, we evaluated the epigenetic DNA modification status of B chromosomes using immunocytogenetics and assessed the impact of B chromosome presence on the global contents of 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) and the molecular mechanisms underlying these variations. We found that the B chromosome of A. latifasciata has an active pattern of DNA epimarks, and its presence promotes the loss of 5mC in gonads of females with B chromosome (FB+) and promotes the loss of 5hmC in the muscle of males with the B element (MB+). Based on the transcriptional quantification of DNA modification genes (dnmt, tet, and tdg) and their candidate regulators (idh genes, microRNAs, and long non-coding RNAs) and on RNA-protein interaction prediction, we suggest the occurrence of passive demethylation in gonads of FB+ and 5hmC loss by Tet inhibition or by 5hmC oxidation in MB+ muscle. We suggest that these results can also explain the previously reported variations in the transcription levels of several classes of RNA depending on B chromosome presence. The DNA modifications detected here are also influenced by sex. Although the correlation between B chromosomes and sex has been previously reported, it remains unexplained. The B chromosome of A. latifasciata seems to be active and impacts cell physiology in a very complex way, including at the epigenetic level.
Collapse
Affiliation(s)
- Adauto Lima Cardoso
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| | - Bruno Evaristo de Almeida Fantinatti
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| | - Natália Bortholazzi Venturelli
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| | - Bianca de Oliveira Carmello
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| | - Rogério Antonio de Oliveira
- Department of Biostatistics, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| | - Cesar Martins
- Integrative Genomics Laboratory, Department of Morphology, Institute of Biosciences, São Paulo State University - Universidade Estadual Paulista, Botucatu, Brazil
| |
Collapse
|
11
|
Gene expression changes elicited by a parasitic B chromosome in the grasshopper Eyprepocnemis plorans are consistent with its phenotypic effects. Chromosoma 2019; 128:53-67. [PMID: 30617552 DOI: 10.1007/s00412-018-00689-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/20/2018] [Accepted: 12/21/2018] [Indexed: 01/16/2023]
Abstract
Parasitism evokes adaptive physiological changes in the host, many of which take place through gene expression changes. This response can be more or less local, depending on the organ or tissue affected by the parasite, or else systemic when the parasite affects the entire host body. The most extreme of the latter cases is intragenomic parasitism, where the parasite is present in all host nuclei as any other genomic element. Here, we show the molecular crosstalk between a parasitic chromosome (also named B chromosome) and the host genome, manifested through gene expression changes. The transcriptome analysis of 0B and 1B females of the grasshopper Eyprepocnemis plorans, validated by a microarray experiment performed on four B-lacking and five B-carrying females, revealed changes in gene expression for 188 unigenes being consistent in both experiments. Once discarded B-derived transcripts, there were 46 differentially expressed genes (30 up- and 16 downregulated) related with the adaptation of the host genome to the presence of the parasitic chromosome. Interestingly, the functions of these genes could explain some of the most important effects of B chromosomes, such as nucleotypic effects derived from the additional DNA they represent, chemical defense and detoxification, protein modification and response to stress, ovary function, and regulation of gene expression. Collectively, these changes uncover an intimate host-parasite interaction between A and B chromosomes during crucial steps of gene expression and protein function.
Collapse
|