1
|
Johnson J, Bessette DC, Saunus JM, Smart CE, Song S, Johnston RL, Cocciardi S, Rozali EN, Johnstone CN, Vargas AC, Kazakoff SH, BioBank VC, Khanna KK, Lakhani SR, Chenevix-Trench G, Simpson PT, Nones K, Waddell N, Al-Ejeh F. Characterization of a novel breast cancer cell line derived from a metastatic bone lesion of a breast cancer patient. Breast Cancer Res Treat 2018; 170:179-188. [DOI: 10.1007/s10549-018-4719-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 02/15/2018] [Indexed: 02/03/2023]
|
2
|
Eersels K, van Grinsven B, Khorshid M, Somers V, Püttmann C, Stein C, Barth S, Diliën H, Bos GMJ, Germeraad WTV, Cleij TJ, Thoelen R, De Ceuninck W, Wagner P. Heat-transfer-method-based cell culture quality assay through cell detection by surface imprinted polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2043-2050. [PMID: 25654744 DOI: 10.1021/la5046173] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Previous work has indicated that surface imprinted polymers (SIPs) allow for highly specific cell detection through macromolecular cell imprints. The combination of SIPs with a heat-transfer-based read-out technique has led to the development of a selective, label-free, low-cost, and user-friendly cell detection assay. In this study, the breast cancer cell line ZR-75-1 is used to assess the potential of the platform for monitoring the quality of a cell culture in time. For this purpose, we show that the proposed methodology is able to discriminate between the original cell line (adherent growth, ZR-75-1a) and a descendant cell line (suspension growth, ZR-75-1s). Moreover, ZR-75-1a cells were cultured for a prolonged period of time and analyzed using the heat-transfer method (HTM) at regular time intervals. The results of these experiments demonstrate that the thermal resistance (Rth) signal decays after a certain number of cell culture passages. This can likely be attributed to a compromised quality of the cell culture due to cross-contamination with the ZR-75-1s cell line, a finding that was confirmed by classical STR DNA profiling. The cells do not express the same functional groups on their membrane, resulting in a weaker bond between cell and imprint, enabling cell removal by mechanical friction, provided by flushing the measuring chamber with buffer solution. These findings were further confirmed by HTM and illustrate that the biomimetic sensor platform can be used as an assay for monitoring the quality of cell cultures in time.
Collapse
Affiliation(s)
- Kasper Eersels
- Hasselt University , Institute for Materials Research IMO, Wetenschapspark 1, Diepenbeek, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Abstract
The history of the culture of animal cell lines is littered with published and much unpublished experience with cell lines that have become switched, mislabelled, or cross-contaminated during laboratory handling. To deliver valid and good quality research and to avoid waste of time and resources on such rogue lines, it is vital to perform some kind of qualification for the provenance of cell lines used in research and particularly in the development of biomedical products. DNA profiling provides a valuable tool to compare different sources of the same cells and, where original material or tissue is available, to confirm the correct identity of a cell line. This chapter provides a review of some of the most useful techniques to test the identity of cells in the cell culture laboratory and gives methods which have been used in the authentication of cell lines.
Collapse
|
4
|
McLaren RS, Reid Y, Storts DR. Human cell line authentication: the critical first step in any project using human cell lines. Methods Mol Biol 2013; 963:341-53. [PMID: 23296621 DOI: 10.1007/978-1-62703-230-8_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Short tandem repeat (STR) typing is a standard procedure used in many laboratories for the authentication of human cell lines. This technology, which is based on the informativeness of known polymorphism of numerous loci to uniquely identify a human cell line, has allowed for direct-amplification of human DNA stored on FTA(®) paper. We describe an application of this technology to create a unique STR profile by direct amplification of HCT 116 (ATCC(®) CCL-247™) cell line DNA, a cell line commonly used in colon research. The ability to perform direct-amplification of DNA opens up the possibility of using FTA(®) paper as a way to maintain long-term storage of DNA samples from a cell line and other human tissues, such as buccal cells.
Collapse
|
5
|
Ke W, Yu P, Wang J, Wang R, Guo C, Zhou L, Li C, Li K. MCF-7/ADR cells (re-designated NCI/ADR-RES) are not derived from MCF-7 breast cancer cells: a loss for breast cancer multidrug-resistant research. Med Oncol 2010; 28 Suppl 1:S135-41. [PMID: 21116879 DOI: 10.1007/s12032-010-9747-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 11/10/2010] [Indexed: 12/21/2022]
Abstract
MCF-7/ADR cells have been widely used as a multidrug-resistant breast cancer cell model in cancer research. The origin of MCF-7/ADR has been a matter of debate since MCF-7/ADR cells were re-designated NCI/ADR-RES in 1998. Many recent studies still describe MCF-7/ADR cells as originating from the breast cancer cell line MCF-7. Thus, the real origin of MCF-7/ADR cells remains more unclear. In this study, a new adriamycin (ADR)-resistant cell line MCF-7/ADR' was reproduced using the same procedure employed during the initial establishment of MCF-7/ADR. Since the MCF-7/ADR' cell line was definitely derived from parental MCF-7 cells, we were able to directly compare these cell lines together with MCF-7/ADR using immunocytochemical, morphological, and consecutive DNA fingerprinting analyses to determine the true origin of MCF-7/ADR. Both ADR-resistant cell lines displayed some similar phenotypic characteristics, such as high levels of P-glycoprotein (P-gp) expression, increased vacuolation, abundant filamentous material, and irregular pseudopodia. With increasing concentrations of ADR, the DNA fingerprints of MCF-7/ADR' cells were always identical to the parental MCF-7 cells. However, the DNA fingerprints of MCF-7/ADR cells did not relate to MCF-7 or MCF-7/ADR'. MCF-7/ADR and the breast cancer cell line MCF-7 are not of the same origin. Long-time culture in the presence of ADR does not cause significant changes in DNA fingerprint patterns.
Collapse
Affiliation(s)
- Weifeng Ke
- Department of General Surgery, First People's Hospital Affiliated to Shanghai Jiaotong University, No 100 Haining Road, Hongkou District, Shanghai 200080, China
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Epithelial mesenchymal transition traits in human breast cancer cell lines. Clin Exp Metastasis 2008; 25:629-42. [PMID: 18461285 DOI: 10.1007/s10585-008-9170-6] [Citation(s) in RCA: 241] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2007] [Accepted: 02/13/2008] [Indexed: 01/23/2023]
Abstract
Epithelial mesenchymal transition (EMT) has long been associated with breast cancer cell invasiveness and evidence of EMT processes in clinical samples is growing rapidly. Genome-wide transcriptional profiling of increasingly larger numbers of human breast cancer (HBC) cell lines have confirmed the existence of a subgroup of cell lines (termed Basal B/Mesenchymal) with enhanced invasive properties and a predominantly mesenchymal gene expression signature, distinct from subgroups with predominantly luminal (termed Luminal) or mixed basal/luminal (termed Basal A) features (Neve et al Cancer Cell 2006). Studies providing molecular and cellular analyses of EMT features in these cell lines are summarised, and the expression levels of EMT-associated factors in these cell lines are analysed. Recent clinical studies supporting the presence of EMT-like changes in vivo are summarised. Human breast cancer cell lines with mesenchymal properties continue to hold out the promise of directing us towards key mechanisms at play in the metastatic dissemination of breast cancer.
Collapse
|
7
|
Demichelis F, Greulich H, Macoska JA, Beroukhim R, Sellers WR, Garraway L, Rubin MA. SNP panel identification assay (SPIA): a genetic-based assay for the identification of cell lines. Nucleic Acids Res 2008; 36:2446-56. [PMID: 18304946 PMCID: PMC2367734 DOI: 10.1093/nar/gkn089] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Translational research hinges on the ability to make observations in model systems and to implement those findings into clinical applications, such as the development of diagnostic tools or targeted therapeutics. Tumor cell lines are commonly used to model carcinogenesis. The same tumor cell line can be simultaneously studied in multiple research laboratories throughout the world, theoretically generating results that are directly comparable. One important assumption in this paradigm is that researchers are working with the same cells. However, recent work using high throughput genomic analyses questions the accuracy of this assumption. Observations by our group and others suggest that experiments reported in the scientific literature may contain pre-analytic errors due to inaccurate identities of the cell lines employed. To address this problem, we developed a simple approach that enables an accurate determination of cell line identity by genotyping 34 single nucleotide polymorphisms (SNPs). Here, we describe the empirical development of a SNP panel identification assay (SPIA) compatible with routine use in the laboratory setting to ensure the identity of tumor cell lines and human tumor samples throughout the course of long term research use.
Collapse
|
8
|
Hugo H, Ackland ML, Blick T, Lawrence MG, Clements JA, Williams ED, Thompson EW. Epithelial--mesenchymal and mesenchymal--epithelial transitions in carcinoma progression. J Cell Physiol 2008; 213:374-83. [PMID: 17680632 DOI: 10.1002/jcp.21223] [Citation(s) in RCA: 821] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Like a set of bookends, cellular, molecular, and genetic changes of the beginnings of life mirror those of one of the most common cause of death--metastatic cancer. Epithelial to mesenchymal transition (EMT) is an important change in cell phenotype which allows the escape of epithelial cells from the structural constraints imposed by tissue architecture, and was first recognized by Elizabeth Hay in the early to mid 1980's to be a central process in early embryonic morphogenesis. Reversals of these changes, termed mesenchymal to epithelial transitions (METs), also occur and are important in tissue construction in normal development. Over the last decade, evidence has mounted for EMT as the means through which solid tissue epithelial cancers invade and metastasize. However, demonstrating this potentially rapid and transient process in vivo has proven difficult and data connecting the relevance of this process to tumor progression is still somewhat limited and controversial. Evidence for an important role of MET in the development of clinically overt metastases is starting to accumulate, and model systems have been developed. This review details recent advances in the knowledge of EMT as it occurs in breast development and carcinoma and prostate cancer progression, and highlights the role that MET plays in cancer metastasis. Finally, perspectives from a clinical and translational viewpoint are discussed.
Collapse
Affiliation(s)
- Honor Hugo
- Embryology Laboratory, Murdoch Children's Research Institute, The Royal Children's Hospital, Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
9
|
Abstract
From HeLa and its multiple identities, to MDA-MB-435, erroneously and widely used as breast cancer cells, the history of cancer cell lines is rich in misidentification and cross-contamination events. Despite the fact that these problems were regularly signaled during the last decades, many actors of research still seem to ignore them. A never-ending story? Solutions exist, notably based on recent technical advances in cell line authentication (short tandem repeat analysis). However, a collaborative action involving users of cell lines, cell banks, journals and funding agencies is needed to achieve success.
Collapse
|
10
|
Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD. MDA-MB-435 cells are derived from M14 melanoma cells--a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 2006; 104:13-9. [PMID: 17004106 DOI: 10.1007/s10549-006-9392-8] [Citation(s) in RCA: 293] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 08/22/2006] [Indexed: 11/24/2022]
Abstract
BACKGROUND The tissue of origin of the cell line MDA-MB-435 has been a matter of debate since analysis of DNA microarray data led Ross et al. (2000, Nat Genet 24(3):227-235) to suggest they might be of melanocyte origin due to their similarity to melanoma cell lines. We have previously shown that MDA-MB-435 cells maintained in multiple laboratories are of common origin to those used by Ross et al. and concluded that MDA-MB-435 cells are not a representative model for breast cancer. We could not determine, however, whether the melanoma-like properties of the MDA-MB-435 cell line are the result of misclassification or due to transdifferention to a melanoma-like phenotype. METHODS We used karyotype, comparative genomic hybridization (CGH), and microsatalite polymorphism analyses, combined with bioinformatics analysis of gene expression and single nucleotide polymorphism (SNP) data, to test the hypothesis that the MDA-MB-435 cell line is derived from the melanoma cell line M14. RESULTS We show that the MDA-MB-435 and M14 cell lines are essentially identical with respect to cytogenetic characteristics as well as gene expression patterns and that the minor differences found can be explained by phenotypic and genotypic clonal drift. CONCLUSIONS All currently available stocks of MDA-MB-435 cells are derived from the M14 melanoma cell line and can no longer be considered a model of breast cancer. These cells are still a valuable system for the study of cancer metastasis and the extensive literature using these cells since 1982 represent a valuable new resource for the melanoma research community.
Collapse
Affiliation(s)
- James M Rae
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical Center, 1150 West Medical Center Drive, Med Sci I, Room 5323, Ann Arbor, MI 48109-0612, USA.
| | | | | | | | | |
Collapse
|
11
|
Liscovitch M, Ravid D. A case study in misidentification of cancer cell lines: MCF-7/AdrR cells (re-designated NCI/ADR-RES) are derived from OVCAR-8 human ovarian carcinoma cells. Cancer Lett 2006; 245:350-2. [PMID: 16504380 DOI: 10.1016/j.canlet.2006.01.013] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2006] [Accepted: 01/17/2006] [Indexed: 10/25/2022]
Abstract
Multidrug-resistant MCF-7 breast adenocarcinoma cells (originally named MCF-7/AdrR cells and later re-designated NCI/ADR-RES) have served as an important and widely used research tool during the last two decades. However, the real identity of these cells has been in doubt since 1998 and has since been debated. The origin of NCI/ADR-RES cells has now been revealed by SNP and karyotypic analyses, carried out at the Sanger Institute and the NCI, respectively. The results of these analyses, recently posted on the Web, show that NCI/ADR-RES cells are derived from OVCAR-8 ovarian adenocarcinoma cells. The case of NCI/ADR-RES cells highlights a wide-spread problem of cell line cross-contamination and misidentification. Fortunately, this is a tractable problem that can be avoided by scrupulous genotyping of cell stocks and adoption of a few simple rules in cell culture practice.
Collapse
Affiliation(s)
- Mordechai Liscovitch
- Department of Biological Regulation, Weizmann Institute of Science, P.O.B. 26 Rehovot 76100, Israel.
| | | |
Collapse
|
12
|
Rae JM, Ramus SJ, Waltham M, Armes JE, Campbell IG, Clarke R, Barndt RJ, Johnson MD, Thompson EW. Common origins of MDA-MB-435 cells from various sources with those shown to have melanoma properties. Clin Exp Metastasis 2005; 21:543-52. [PMID: 15679052 DOI: 10.1007/s10585-004-3759-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recently, the tissue origin of MDA-MB-435 cell line has been the subject of considerable debate. In this study, we set out to determine whether MDA-MB-435-DTP cells shown to express melanoma-specific genes were identical to various other MDA-MB-435 cell stocks worldwide. CGH-microarray, genetic polymorphism genotyping, microsatellite fingerprint analysis and/or chromosomal number confirmed that the MDA-MB-435 cells maintained at the Lombardi Comprehensive Cancer Center (MDA-MB-435-LCC) are almost identical to the MDA-MB-435-DTP cells, and showed a very similar profile to those obtained from the same original source (MD Anderson Cancer Center) but maintained independently (MDA-MB-435-PMCC). Gene expression profile analysis confirmed common expression of genes among different MDA-MB-435-LCC cell stocks, and identified some unique gene products in MDA-MB-435-PMCC cells. RT-PCR analysis confirmed the expression of the melanoma marker tyrosinase across multiple MDA-MB-435 cell stocks. Collectively, our results show that the MDA-MB-435 cells used widely have identical origins to those that exhibit a melanoma-like gene expression signature, but exhibit a small degree of genotypic and phenotypic drift.
Collapse
Affiliation(s)
- James M Rae
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | |
Collapse
|