1
|
Zhang Y, Zheng Y, Zhang J, Xu C, Wu J. Apoptotic signaling pathways in bone metastatic lung cancer: a comprehensive analysis. Discov Oncol 2024; 15:310. [PMID: 39060849 PMCID: PMC11282049 DOI: 10.1007/s12672-024-01151-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This review provides a comprehensive analysis of apoptotic signaling pathways in the context of bone metastatic lung cancer, emphasizing the intricate molecular mechanisms and microenvironmental influences. Beginning with an overview of apoptosis in cancer, the paper explores the specific molecular characteristics of bone metastatic lung cancer, highlighting alterations in apoptotic pathways. Focused discussions delve into key apoptotic signaling pathways, including the intrinsic and extrinsic pathways, and the roles of critical molecular players such as Bcl-2 family proteins and caspases. Microenvironmental factors, such as the tumor microenvironment, extracellular matrix interactions, and immune cell involvement, are examined in depth. The review also addresses experimental approaches and techniques employed in studying apoptotic signaling, paving the way for a discussion on current therapeutic strategies, their limitations, and future prospects. This synthesis contributes a holistic understanding of apoptosis in bone metastatic lung cancer, offering insights for potential therapeutic advancements.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
- Health Science Center, Ningbo University, Ningbo, 315211, Zhejiang, China
| | - Yi Zheng
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Jiakai Zhang
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China
| | - Chaoyang Xu
- Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Junlong Wu
- Department of Orthopedic Surgery, Ningbo No. 2 Hospital, Ningbo, 315010, Zhejiang, China.
| |
Collapse
|
2
|
Liao R, Zhang Y, Mao W. Functionalized graphene oxide NPs as a nanocarrier for drug delivery system in quercetin/ lurbinectedin as dual sensitive therapeutics for A549 lung cancer treatment. Heliyon 2024; 10:e31212. [PMID: 38841488 PMCID: PMC11152904 DOI: 10.1016/j.heliyon.2024.e31212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/11/2024] [Accepted: 05/13/2024] [Indexed: 06/07/2024] Open
Abstract
Functionalized graphene oxide nanoparticles (NPs) have emerged as promising nanocarriers for drug delivery in lung cancer therapy. Quercetin and lurbinectedin encapsulated in graphene oxide (GO) NPs are tested for treating A549 lung cancer cells. Spectroscopic analyses show that graphene oxide functionalization creates a transparent, smooth surface for drug loading. Treatment with quercetin/lurbinectedin-loaded GO NPs induces notable cytotoxic effects in lung cancer cells, as evidenced by distinct morphological alterations and confirmed apoptotic cellular death observed through fluorescence microscopy. Additionally, our study highlights the impact of this approach on lung cancer metastasis, supported by qRT-PCR analysis of relative gene expression levels, including p53, Bax, Caspase-3, and Bcl 2, revealing robust molecular mechanisms underlying therapeutic efficacy against A549 and PC9 cell lines. Flow cytometric analyses further confirm the induction of cellular death in lung cancer cells following administration of the nanoformulation. Our findings show that quercetin/lurbinectedin-loaded GO NPs may be a promising lung cancer treatment, opening new avenues for targeted and effective therapies.
Collapse
Affiliation(s)
- Ruomin Liao
- Department of Respiratory, Shanghai Gerneral Hospital, Shanghai, 201620, China
| | - Yi Zhang
- Department of Thoracic Surgery, Shanghai Gerneral Hospital, Shanghai, 201620, China
| | - Wenwei Mao
- Department of Respiratory and Critical Care Medicine, The First People's Hospital of Wenling, 317500, Zhejiang Province, China
| |
Collapse
|
3
|
Hu J, Sánchez-Rivera FJ, Wang Z, Johnson GN, Ho YJ, Ganesh K, Umeda S, Gan S, Mujal AM, Delconte RB, Hampton JP, Zhao H, Kottapalli S, de Stanchina E, Iacobuzio-Donahue CA, Pe'er D, Lowe SW, Sun JC, Massagué J. STING inhibits the reactivation of dormant metastasis in lung adenocarcinoma. Nature 2023; 616:806-813. [PMID: 36991128 PMCID: PMC10569211 DOI: 10.1038/s41586-023-05880-5] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/22/2023] [Indexed: 03/31/2023]
Abstract
Metastasis frequently develops from disseminated cancer cells that remain dormant after the apparently successful treatment of a primary tumour. These cells fluctuate between an immune-evasive quiescent state and a proliferative state liable to immune-mediated elimination1-6. Little is known about the clearing of reawakened metastatic cells and how this process could be therapeutically activated to eliminate residual disease in patients. Here we use models of indolent lung adenocarcinoma metastasis to identify cancer cell-intrinsic determinants of immune reactivity during exit from dormancy. Genetic screens of tumour-intrinsic immune regulators identified the stimulator of interferon genes (STING) pathway as a suppressor of metastatic outbreak. STING activity increases in metastatic progenitors that re-enter the cell cycle and is dampened by hypermethylation of the STING promoter and enhancer in breakthrough metastases or by chromatin repression in cells re-entering dormancy in response to TGFβ. STING expression in cancer cells derived from spontaneous metastases suppresses their outgrowth. Systemic treatment of mice with STING agonists eliminates dormant metastasis and prevents spontaneous outbreaks in a T cell- and natural killer cell-dependent manner-these effects require cancer cell STING function. Thus, STING provides a checkpoint against the progression of dormant metastasis and a therapeutically actionable strategy for the prevention of disease relapse.
Collapse
Affiliation(s)
- Jing Hu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Francisco J Sánchez-Rivera
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhenghan Wang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Gabriela N Johnson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yu-Jui Ho
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Shigeaki Umeda
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Siting Gan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Adriana M Mujal
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Rebecca B Delconte
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jessica P Hampton
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Huiyong Zhao
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sanjay Kottapalli
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christine A Iacobuzio-Donahue
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dana Pe'er
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Scott W Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joseph C Sun
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- The Alan and Sandra Gerry Metastasis and Tumor Ecosystems Center, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
4
|
Hall C, von Grabowiecki Y, Pearce SP, Dive C, Bagley S, Muller PAJ. iRFP (near-infrared fluorescent protein) imaging of subcutaneous and deep tissue tumours in mice highlights differences between imaging platforms. Cancer Cell Int 2021; 21:247. [PMID: 33941186 PMCID: PMC8091726 DOI: 10.1186/s12935-021-01918-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vivo imaging using fluorescence is used in cancer biology for the detection, measurement and monitoring of tumours. This can be achieved with the expression of fluorescent proteins such as iRFP, which emits light at a wavelength less attenuated in biological tissues compared to light emitted by other fluorescent proteins such as GFP or RFP. Imaging platforms capable of detecting fluorescent tumours in small animals have been developed but studies comparing the performance of these platforms are scarce. RESULTS Through access to three platforms from Xenogen, Bruker and Li-Cor, we compared their ability to detect iRFP-expressing subcutaneous tumours as well as tumours localised deeper within the body of female NSG mice. Each platform was paired with proprietary software for image analyse, but the output depends on subjective decisions from the user. To more objectively compare platforms, we developed an 'in house' software-based approach which results in lower measured variability between mice. CONCLUSIONS Our comparisons showed that all three platforms allowed for reliable detection and monitoring of subcutaneous iRFP tumour growth. The biggest differences between platforms became apparent when imaging deeper tumours with the Li-Cor platform detecting most tumours and showing the highest dynamic range.
Collapse
Affiliation(s)
- C Hall
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - Y von Grabowiecki
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - S P Pearce
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - C Dive
- Cancer Biomarker Centre, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - S Bagley
- Visualisation, Irradiation and Analysis, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK
| | - P A J Muller
- Tumour Suppressors Group, CRUK Manchester Institute, University of Manchester, Alderley Park, Manchester, SK10 4TG, UK.
| |
Collapse
|
5
|
Doak GR, Schwertfeger KL, Wood DK. Distant Relations: Macrophage Functions in the Metastatic Niche. Trends Cancer 2018; 4:445-459. [PMID: 29860988 DOI: 10.1016/j.trecan.2018.03.011] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 12/14/2022]
Abstract
Tumor-associated macrophages are known contributors of tumor progression in the primary tumor via multiple mechanisms. However, recent studies have demonstrated the ability of macrophages to promote secondary tumor development by inhibiting tumoricidal immune response, initiating angiogenesis, remodeling the local matrix, and directly communicating with cancer cells. In this review, we discuss macrophage functions in establishing distant metastases including formation of the premetastatic niche, extravasation of circulating cancer cells, and colonization of secondary metastases. A more thorough understanding of metastasis-associated macrophages and their associated mechanisms of metastatic progression may lead to novel therapeutic intervention to prevent further metastatic development and tumor reseeding.
Collapse
Affiliation(s)
- Geneva R Doak
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | - Kathryn L Schwertfeger
- Department of Lab Medicine and Pathology, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| | - David K Wood
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA; Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
6
|
Heterogeneity of tumor cells in the bone microenvironment: Mechanisms and therapeutic targets for bone metastasis of prostate or breast cancer. Adv Drug Deliv Rev 2016; 99:206-211. [PMID: 26656603 DOI: 10.1016/j.addr.2015.11.017] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/19/2015] [Accepted: 11/25/2015] [Indexed: 01/08/2023]
Abstract
Bone is the most common target organ of metastasis of prostate and breast cancers. This produces considerable morbidity due to skeletal-related events, SREs, including bone pain, hypercalcemia, pathologic fracture, and compression of the spinal cord. The mechanism of bone metastasis is complex and involves cooperative reciprocal interaction among tumor cells, osteoblasts, osteoclasts, and the mineralized bone matrix. The interaction between the metastatic tumor and bone stromal cells has been commonly referred to as the "vicious cycle". Tumor cells stimulate osteoblasts, which in turn stimulate osteoclasts through the secretion of cytokines such as the TNF family member receptor activator of nuclear κB ligand (RANKL). Activated osteoclasts degrade the bone matrix by producing strong acid and proteinases. Bone degradation by osteoclasts releases TGFβ and other growth factors stored in the bone matrix, that further stimulate tumor cells. Bone modifying agents, targeting osteoclast activity, such as bisphosphonate and RANKL antibodies are considered as the standard of care for reducing SREs of patients with bone metastatic diseases. These agents decrease osteoclast activity and delay worsening of skeletal pain and aggravation of bone metastatic diseases. While the management of SREs by these agents may improve patients' lives, this treatment does not address the specific issues of the patients with bone metastasis such as tumor dormancy, drug resistance, or improvement of survival. Here, we review the mechanisms of bone metastasis formation, tumor heterogeneity in the bone microenvironment, and conventional therapy for bone metastatic diseases and discuss the potential development of new therapies targeting tumor heterogeneity in the bone microenvironment.
Collapse
|
7
|
Vicent S, Perurena N, Govindan R, Lecanda F. Bone metastases in lung cancer. Potential novel approaches to therapy. Am J Respir Crit Care Med 2016; 192:799-809. [PMID: 26131844 DOI: 10.1164/rccm.201503-0440so] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The skeleton is a common site of metastases in lung cancer, an event associated with significant morbidities and poor outcomes. Current antiresorptive therapies provide limited benefit, and novel strategies of prevention and treatment are urgently needed. This review summarizes the latest advances and new perspectives on emerging experimental and clinical approaches to block this deleterious process. Progress propelled by preclinical models has led to a deeper understanding on the complex interplay of tumor cells in the osseous milieu, unveiling potential new targets for drug development. Improvements in early diagnosis through the use of sophisticated imaging techniques with bone serum biomarkers are also discussed in the context of identifying patients at risk and monitoring disease progression during the course of treatment.
Collapse
Affiliation(s)
- Silvestre Vicent
- 1 Division of Oncology, Center for Applied Medical Research, and.,2 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,3 IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; and
| | - Naiara Perurena
- 1 Division of Oncology, Center for Applied Medical Research, and
| | - Ramaswamy Govindan
- 4 Division of Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Fernando Lecanda
- 1 Division of Oncology, Center for Applied Medical Research, and.,2 Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain.,3 IdiSNA, Navarra Institute for Health Research, Pamplona, Spain; and
| |
Collapse
|
8
|
Singla AK, Downey CM, Bebb GD, Jirik FR. Characterization of a murine model of metastatic human non-small cell lung cancer and effect of CXCR4 inhibition on the growth of metastases. Oncoscience 2015; 2:263-71. [PMID: 25897429 PMCID: PMC4394132 DOI: 10.18632/oncoscience.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/06/2015] [Indexed: 01/23/2023] Open
Abstract
Despite successful preclinical testing carried out through the use of subcutaneous xenografted tumors, many anti-cancer agents have gone on to fail in human trials. One potential factor accounting for this discrepancy may relate to the inadequacy of the commonly employed preclinical models to recapitulate the human disease, particularly when it comes to discovery of agents that are effective against advanced disease. Herein, we report the characterization of a NSCLC model and an exploration of the impact that a CXCR4 inhibitor, AMD3100, had on NCI-H1299-derived metastasis. These cells express a variety of metastasis-promoting factors, hence we selected them for a study of their metastatic colonization potential. To accomplish this, luciferase-expressing H1299 (H1299-luc2) cells were inoculated into athymic mice via the intracardiac route. This strategy produced adrenal, bone, ovarian, and pancreatic metastases, sites commonly involved in human metastatic NSCLC. Notably, micro-computed tomography and histological evaluation of the skeletal lesions revealed the presence of extensive osteolysis. To investigate the potential role of CXCR4 in mediating metastatic colonization of tissues, AMD3100 was administered to mice inoculated with H1299-luc2 cells. While this treatment did not appreciably alter the frequency of metastatic colonization, it was able to slow the growth of macrometastases. This model, recapitulating some of the events seen in late-stage human NSCLC, may prove useful in the evaluation of new therapies targeting metastatic disease.
Collapse
Affiliation(s)
- Arvind K Singla
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, Alberta, Canada
| | - Charlene M Downey
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, Alberta, Canada
| | - Gwyn D Bebb
- Tom Baker Cancer Centre, and Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| | - Frank R Jirik
- Department of Biochemistry and Molecular Biology, The McCaig Institute for Bone and Joint Health, Alberta, Canada
| |
Collapse
|
9
|
Colony-stimulating factor 1 potentiates lung cancer bone metastasis. J Transl Med 2014; 94:371-81. [PMID: 24468794 DOI: 10.1038/labinvest.2014.1] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 11/22/2013] [Accepted: 12/22/2013] [Indexed: 11/09/2022] Open
Abstract
Colony-stimulating factor 1 (CSF1) is essential for osteoclastogenesis that mediates osteolysis in metastatic tumors. Patients with lung cancer have increased CSF1 in serum and high levels are associated with poor survival. Adenocarcinomas metastasize rapidly and many patients suffer from bone metastasis. Lung cancer stem-like cells sustain tumor growth and potentiate metastasis. The purpose of this study was to determine the role of CSF1 in lung cancer bone metastasis and whether inhibition of CSF1 ameliorates the disease. Human lung adenocarcinoma A549 cells were examined in vitro for CSF1/CSF1R. A549-luc cells were injected intracardiac in NOD/SCID mice and metastasis was assessed. To determine the effect of CSF1 knockdown (KD) in A549 cells on bone metastasis, cells were stably transfected with a retroviral vector containing short-hairpin CSF1 (KD) or empty vector (CT). Results showed that A549 cells express CSF1/CSF1R; CSF1 increased their proliferation and invasion, whereas soluble CSF1R inhibited invasion. Mice injected with A549-luc cells showed osteolytic bone lesions 3.5 weeks after injection and lesions increased over 5 weeks. Tumors recapitulated adenocarcinoma morphology and showed osteoclasts along the tumor/bone interface, trabecular, and cortical bone loss. Analyses of KD cells showed decreased CSF1 protein levels, reduced colony formation in soft agar assay, and decreased fraction of stem-like cells. In CSF1KD mice, the incidence of tumor metastasis was similar to controls, although fewer CSF1KD mice had metastasis in both hind limbs. KD tumors showed reduced CSF1 expression, Ki-67+ cells, and osteoclasts. Importantly, there was a low incidence of large tumors >0.1 mm(2) in CSF1KD mice compared with control mice (10% vs 62.5%). This study established a lung osteolytic bone metastasis model that resembles human disease and suggests that CSF1 is a key determinant of cancer stem cell survival and tumor growth. Results may lead to novel strategies to inhibit CSF1 in lung cancer and improve management of bone metastasis.
Collapse
|
10
|
El-Abd EA, Sultan AS, Shalaby EA, Matalkah F. Animal Models of Breast Cancer. OMICS APPROACHES IN BREAST CANCER 2014:297-314. [DOI: 10.1007/978-81-322-0843-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Pajares MJ, Agorreta J, Montuenga L, Vicent S, Wistuba II, De Las Rivas J, Lecanda F. RHOB influences lung adenocarcinoma metastasis and resistance in a host-sensitive manner. Mol Oncol 2013; 8:196-206. [PMID: 24321314 DOI: 10.1016/j.molonc.2013.11.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Revised: 10/31/2013] [Accepted: 11/01/2013] [Indexed: 12/20/2022] Open
Abstract
Lung adenocarcinoma (ADC) is the most common lung cancer subtype and presents a high mortality rate. Clinical recurrence is often associated with the emergence of metastasis and treatment resistance. The purpose of this study was to identify genes with high prometastatic activity which could potentially account for treatment resistance. Global transcriptomic profiling was performed by robust microarray analysis in highly metastatic subpopulations. Extensive in vitro and in vivo functional studies were achieved by overexpression and by silencing gene expression. We identified the small GTPase RHOB as a gene that promotes early and late stages of metastasis in ADC. Gene silencing of RHOB prevented metastatic activity in a systemic murine model of bone metastasis. These effects were highly dependent on tumor-host interactions. Clinical analysis revealed a marked association between high RHOB levels and poor survival. Consistently, high RHOB levels promote metastasis progression, taxane-chemoresistance, and contribute to the survival advantage to γ-irradiation. We postulate that RHOB belongs to a novel class of "genes of recurrence" that have a dual role in metastasis and treatment resistance.
Collapse
Affiliation(s)
- Diego Luis-Ravelo
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Iker Antón
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Carolina Zandueta
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Karmele Valencia
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - María-José Pajares
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Jackeline Agorreta
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Luis Montuenga
- Biomarkers Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Silvestre Vicent
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Ignacio I Wistuba
- Department of Pathology, The University of Texas - M. D. Anderson Cancer Center, Houston, TX, USA
| | - Javier De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center, University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - Fernando Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.
| |
Collapse
|
12
|
Luis-Ravelo D, Antón I, Zandueta C, Valencia K, Ormazábal C, Martínez-Canarias S, Guruceaga E, Perurena N, Vicent S, De Las Rivas J, Lecanda F. A gene signature of bone metastatic colonization sensitizes for tumor-induced osteolysis and predicts survival in lung cancer. Oncogene 2013; 33:5090-9. [PMID: 24166494 DOI: 10.1038/onc.2013.440] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/04/2013] [Accepted: 09/09/2013] [Indexed: 01/10/2023]
Abstract
Bone metastasis of lung adenocarcinoma (AC) is a frequent complication of advanced disease. The purpose of this study was to identify key mediators conferring robust prometastatic activity with clinical significance. We isolated highly metastatic subpopulations (HMS) using a previously described in vivo model of lung AC bone metastasis. We performed transcriptomic profiling of HMS and stringent bioinformatics filtering. Functional validation was assessed by overexpression and lentiviral silencing of single, double and triple combination in vivo and in vitro. We identified HDAC4, PITX1 and ROBO1 that decreased bone metastatic ability after their simultaneous abrogation. These effects were solely linked to defects in osseous colonization. The molecular mechanisms related to bone colonization were mediated by non-cell autonomous effects that include the following: (1) a marked decrease in osteoclastogenic activity in vitro and in vivo, an effect associated with reduced pro-osteoclastogenic cytokines IL-11 and PTHrP expression levels, as well as decreased in vitro expression of stromal rankl in conditions mimicking tumor-stromal interactions; (2) an abrogated response to TGF-β signaling by decreased phosphorylation and levels of Smad2/3 in tumor cells and (3) an impaired metalloproteolytic activity in vitro. Interestingly, coexpression of HDAC4 and PITX1 conferred high prometastatic activity in vivo. Further, levels of both genes correlated with patients at higher risk of metastasis in a clinical lung AC data set and with a poorer clinical outcome. These findings provide functional and clinical evidence that this metastatic subset is an important determinant of osseous colonization. These data suggest novel therapeutic targets to effectively block lung AC bone metastasis.
Collapse
Affiliation(s)
- D Luis-Ravelo
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - I Antón
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - C Zandueta
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - K Valencia
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - C Ormazábal
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - S Martínez-Canarias
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - E Guruceaga
- Bioinformatics and Proteomics Unit, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - N Perurena
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| | - S Vicent
- 1] Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain [2] Department of Histology and Pathology, School of Medicine, University of Navarra, Pamplona, Spain
| | - J De Las Rivas
- Bioinformatics and Functional Genomics Research Group, Cancer Research Center, University of Salamanca (CSIC/USAL), Salamanca, Spain
| | - F Lecanda
- Division of Oncology, Adhesion and Metastasis Laboratory, University of Navarra, Pamplona, Spain
| |
Collapse
|
13
|
Animal model for mammary tumor growth in the bone microenvironment. Breast Cancer 2013; 20:195-203. [DOI: 10.1007/s12282-013-0439-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 01/07/2013] [Indexed: 02/06/2023]
|
14
|
Valencia K, Martín-Fernández M, Zandueta C, Ormazábal C, Martínez-Canarias S, Bandrés E, de la Piedra C, Lecanda F. miR-326 associates with biochemical markers of bone turnover in lung cancer bone metastasis. Bone 2013; 52:532-9. [PMID: 23142363 DOI: 10.1016/j.bone.2012.10.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 10/26/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023]
Abstract
Recent evidence suggests that miRNAs could be used as serum markers in a variety of normal and pathological conditions. In this study, we aimed to identify novel miRNAs associated with skeletal metastatic disease in a preclinical model of lung cancer bone metastasis. We assessed the validity of these miRNAs as reliable serum biochemical markers to monitor the extent of disease and response to treatment in comparison to imaging techniques and standard biochemical markers of bone turnover. Using a murine model of human lung cancer bone metastasis after zoledronic acid (ZA) treatment, PINP (procollagen I amino-terminal propeptide) was the only marker that exhibited a strong correlation with osteolytic lesions and tumor burden at early and late stages of bone colonization. In contrast, BGP (osteocalcin) and CTX (carboxyterminal telopeptide) demonstrated a strong correlation only at late stages. We performed qPCR based screening of a panel of 380 human miRNAs and quantified bone metastatic burden using micro-CT scans, X-rays and bioluminescence imaging. Interestingly, levels of miR-326 strongly associated with tumor burden and PINP in vehicle-treated animals, whereas no association was found in ZA-treated animals. Only miR-193 was associated with biochemical markers PINP, BGP and CTX in ZA-treated animals. Consistently, miR-326 and PINP demonstrated a strong correlation with tumor burden. Our findings, taken together, indicate that miR-326 could potentially serve as a novel biochemical marker for monitoring bone metastatic progression.
Collapse
Affiliation(s)
- Karmele Valencia
- Adhesion and Metastasis Laboratory, Division of Oncology, Center for Applied Biomedical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Fernández Vallone VB, Hofer EL, Choi H, Bordenave RH, Batagelj E, Feldman L, La Russa V, Caramutti D, Dimase F, Labovsky V, Martínez LM, Chasseing NA. Behaviour of mesenchymal stem cells from bone marrow of untreated advanced breast and lung cancer patients without bone osteolytic metastasis. Clin Exp Metastasis 2012; 30:317-32. [PMID: 23053744 DOI: 10.1007/s10585-012-9539-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Accepted: 09/17/2012] [Indexed: 12/19/2022]
Abstract
Tumour cells can find in bone marrow (BM) a niche rich in growth factors and cytokines that promote their self-renewal, proliferation and survival. In turn, tumour cells affect the homeostasis of the BM and bone, as well as the balance among haematopoiesis, osteogenesis, osteoclastogenesis and bone-resorption. As a result, growth and survival factors normally sequestered in the bone matrix are released, favouring tumour development. Mesenchymal stem cells (MSCs) from BM can become tumour-associated fibroblasts, have immunosuppressive function, and facilitate metastasis by epithelial-to-mesenchymal transition. Moreover, MSCs generate osteoblasts and osteocytes and regulate osteoclastogenesis. Therefore, MSCs can play an important pro-tumorigenic role in the formation of a microenvironment that promotes BM and bone metastasis. In this study we showed that BM MSCs from untreated advanced breast and lung cancer patients, without bone metastasis, had low osteogenic and adipogenic differentiation capacity compared to that of healthy volunteers. In contrast, chondrogenic differentiation was increased. Moreover, MSCs from patients had lower expression of CD146. Finally, our data showed higher levels of Dkk-1 in peripheral blood plasma from patients compared with healthy volunteers. Because no patient had any bone disorder by the time of the study we propose that the primary tumour altered the plasticity of MSCs. As over 70 % of advanced breast cancer patients and 30-40 % of lung cancer patients will develop osteolytic bone metastasis for which there is no total cure, our findings could possibly be used as predictive tools indicating the first signs of future bone disease. In addition, as the MSCs present in the BM of these patients may not be able to regenerate bone after the tumour cells invasion into BM/bone, it is possible that they promote the cycle between tumour cell growth and bone destruction.
Collapse
Affiliation(s)
- Valeria B Fernández Vallone
- Experimental Biology and Medicine Institute, CONICET, 2490 Vuelta de Obligado, Ciudad Autónoma de Buenos Aires, 1428, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Antón I, Molina E, Luis-Ravelo D, Zandueta C, Valencia K, Ormazabal C, Martínez-Canarias S, Perurena N, Pajares MJ, Agorreta J, Montuenga LM, Segura V, Wistuba II, De Las Rivas J, Hermida J, Lecanda F. Receptor of activated protein C promotes metastasis and correlates with clinical outcome in lung adenocarcinoma. Am J Respir Crit Care Med 2012; 186:96-105. [PMID: 22461368 DOI: 10.1164/rccm.201110-1826oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
RATIONALE Efficient metastasis requires survival and adaptation of tumor cells to stringent conditions imposed by the extracellular milieu. Identification of critical survival signaling pathways in tumor cells might unveil novel targets relevant in disease progression. OBJECTIVES To investigate the contribution of activated protein C (APC) and its receptor (endothelial protein C receptor [EPCR]) in animal models of lung cancer metastasis and in patients with lung adenocarcinoma. METHODS Signaling pathway triggered by APC/EPCR and its relevance in apoptosis was studied in vitro. Functional significance was assessed by silencing and blocking antibodies in several in vivo models of lung cancer metastasis in athymic nude Foxn1(nu) mice. We examined EPCR levels using a microarray dataset of 107 patients. Immunohistochemical analysis was performed in an independent cohort of 295 patients with lung adenocarcinoma. MEASUREMENTS AND MAIN RESULTS The effects of APC binding to EPCR rapidly triggered Akt and extracellular signal-regulated kinase signaling pathways, leading to attenuated in vitro apoptosis. In vivo, silencing of EPCR expression or blocking APC/EPCR interaction reduced infiltration in the target organ, resulting in impaired prometastatic activity. Moreover, overexpression of EPCR induced an increased metastatic activity to target organs. Analysis of clinical samples showed a robust association between high EPCR levels and poor prognosis, particularly in stage I patients. CONCLUSIONS EPCR and its ligand APC promote cell survival that contributes to tumor cell endurance to stress favoring prometastatic activity of lung adenocarcinoma. EPCR/APC is a novel target of relevance in the clinical outcome of early-stage lung cancer.
Collapse
Affiliation(s)
- Iker Antón
- Division of Oncology, Adhesion and Metastasis Laboratory, Center for Applied Medical Research, University of Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|