1
|
Pan Y, Yuan C, Zeng C, Sun C, Xia L, Wang G, Chen X, Zhang B, Liu J, Ding ZY. Cancer stem cells and niches: challenges in immunotherapy resistance. Mol Cancer 2025; 24:52. [PMID: 39994696 PMCID: PMC11852583 DOI: 10.1186/s12943-025-02265-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Accepted: 02/06/2025] [Indexed: 02/26/2025] Open
Abstract
Cancer stem cells (CSCs) are central to tumor progression, metastasis, immune evasion, and therapeutic resistance. Characterized by remarkable self-renewal and adaptability, CSCs can transition dynamically between stem-like and differentiated states in response to external stimuli, a process termed "CSC plasticity." This adaptability underpins their resilience to therapies, including immune checkpoint inhibitors and adoptive cell therapies (ACT). Beyond intrinsic properties, CSCs reside in a specialized microenvironment-the CSC niche-which provides immune-privileged protection, sustains their stemness, and fosters immune suppression. This review highlights the critical role of CSCs and their niche in driving immunotherapy resistance, emphasizing the need for integrative approaches to overcome these challenges.
Collapse
Affiliation(s)
- Yonglong Pan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chaoyi Yuan
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chenglong Zeng
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Chaoyang Sun
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center, Key Laboratory of the MOE, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Limin Xia
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guihua Wang
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Tongji Hospital, GI Cancer Research Institute, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Key Laboratory of Organ Transplantation, Ministry of Education, National Health Commission, Chinese Academy of Medical Sciences, Wuhan, 430030, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Jianfeng Liu
- Cellular Signaling laboratory, Key laboratory of Molecular Biophysics of MOE, International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ze-Yang Ding
- Hepatic Surgery Center, Clinical Medical Research Center of Hepatic Surgery at Hubei Province, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Hubei Key Laboratory of Hepato-Pancreatic-Biliary Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
2
|
Aksoy SA, Earl J, Grahovac J, Karakas D, Lencioni G, Sığırlı S, Bijlsma MF. Organoids, tissue slices and organotypic cultures: Advancing our understanding of pancreatic ductal adenocarcinoma through in vitro and ex vivo models. Semin Cancer Biol 2025; 109:10-24. [PMID: 39730107 DOI: 10.1016/j.semcancer.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/14/2024] [Accepted: 12/19/2024] [Indexed: 12/29/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has one of the worst prognoses of all common solid cancers. For the large majority of PDAC patients, only systemic therapies with very limited efficacy are indicated. In addition, immunotherapies have not brought the advances seen in other cancer types. Several key characteristics of PDAC contribute to poor treatment outcomes, and in this review, we will discuss how these characteristics are best captured in currently available ex vivo or in vitro model systems. For instance, PDAC is hallmarked by a highly desmoplastic and immune-suppressed tumor microenvironment that impacts disease progression and therapy resistance. Also, large differences in tumor biology exist between and within tumors, complicating treatment decisions. Furthermore, PDAC has a very high propensity for locally invasive and metastatic growth. The use of animal models is often not desirable or feasible and several in vitro and ex vivo model systems have been developed, such as organotypic cocultures and tissue slices, among others. However, the absence of a full host organism impacts the ability of these models to accurately capture the characteristics that contribute to poor outcomes in PDAC. We will discuss the caveats and advantages of these model systems in the context of PDAC's key characteristics and provide recommendations on model choice and the possibilities for optimization. These considerations should be of use to researchers aiming to study PDAC in the in vitro setting.
Collapse
Affiliation(s)
- Secil Ak Aksoy
- Bursa Uludag University, Faculty of Medicine, Department of Medical Microbiology, Bursa, Turkey
| | - Julie Earl
- Ramón y Cajal Health Research Institute (IRYCIS), Biomodels and Biomodels Platform Hospital Ramón y Cajal-IRYCIS, Carretera Colmenar Km 9,100, Madrid 28034, Spain; The Biomedical Research Network in Cancer (CIBERONC), Av. Monforte de Lemos, 3-5. Pabellón 11. Planta 0, Madrid 28029, Spain
| | - Jelena Grahovac
- Experimental Oncology Department, Institute for Oncology and Radiology of Serbia, Belgrade, Serbia
| | - Didem Karakas
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Giulia Lencioni
- Department of Biology, University of Pisa, Pisa, Italy; Fondazione Pisana per la Scienza, San Giuliano Terme, Pisa, Italy
| | - Sıla Sığırlı
- Acibadem Mehmet Ali Aydinlar University, Department of Medical Biotechnology, Graduate School of Health Sciences, Istanbul, Turkey
| | - Maarten F Bijlsma
- Amsterdam UMC Location University of Amsterdam, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Chi CW, Lao YH, Ahmed AHR, He S, Merghoub T, Leong KW, Wang S. Enabling continuous immune cell recirculation on a microfluidic array to study immunotherapeutic interactions in a recapitulated tumour microenvironment. LAB ON A CHIP 2024; 24:396-407. [PMID: 38180130 DOI: 10.1039/d3lc00662j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
The effects of immunotherapeutics on interactions between immune and cancer cells are modulated by multiple components in the tumour microenvironment (TME), including endothelium and tumour stroma, which provide both a physical barrier and immunosuppressive stimuli. Herein, we report a recirculating chip to enable continuous immune cell recirculation through a microfluidic cell array to include these crucial players. This system consists of a three-layered cell array (μFCA) spatially emulating the TME, with tailored fluidic circuits establishing T cell recirculation. This platform enables the study of dynamics among the TME, immune cells in a circulatory system and cancer cell responses thereof. Through this system, we found that tumour endothelium hindered T cell infiltration into the reconstructed breast cancer tumour compartment. This negative effect was alleviated when treated with anti-human PD-L1 (programmed cell death ligand 1) antibody. Another key stromal component - cancer associated fibroblasts - attenuated T cell infiltration, compared against normal fibroblasts, and led to reduced apoptotic activity in cancer cells. These results confirm the capability of our tumour-on-a-chip system in identifying some key axes to target in overcoming barriers to immunotherapy by recapitulating immune cell interactions with the reconstructed TME. Our results also attest to the feasibility of scaling up this system for high-throughput cancer immunotherapeutic screening.
Collapse
Affiliation(s)
- Chun-Wei Chi
- Department of Biomedical Engineering, CUNY - City College of New York, New York, NY, 10031, USA.
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY 14214, USA
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - A H Rezwanuddin Ahmed
- Department of Biomedical Engineering, CUNY - City College of New York, New York, NY, 10031, USA.
| | - Siyu He
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Taha Merghoub
- Weill Cornell Medical College, New York, NY 10065, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032, USA
| | - Sihong Wang
- Department of Biomedical Engineering, CUNY - City College of New York, New York, NY, 10031, USA.
| |
Collapse
|
4
|
Rozenberg JM, Filkov GI, Trofimenko AV, Karpulevich EA, Parshin VD, Royuk VV, Sekacheva MI, Durymanov MO. Biomedical Applications of Non-Small Cell Lung Cancer Spheroids. Front Oncol 2021; 11:791069. [PMID: 34950592 PMCID: PMC8688758 DOI: 10.3389/fonc.2021.791069] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Lung malignancies accounted for 11% of cancers worldwide in 2020 and remained the leading cause of cancer deaths. About 80% of lung cancers belong to non-small cell lung cancer (NSCLC), which is characterized by extremely high clonal and morphological heterogeneity of tumors and development of multidrug resistance. The improvement of current therapeutic strategies includes several directions. First, increasing knowledge in cancer biology results in better understanding of the mechanisms underlying malignant transformation, alterations in signal transduction, and crosstalk between cancer cells and the tumor microenvironment, including immune cells. In turn, it leads to the discovery of important molecular targets in cancer development, which might be affected pharmaceutically. The second direction focuses on the screening of novel drug candidates, synthetic or from natural sources. Finally, "personalization" of a therapeutic strategy enables maximal damage to the tumor of a patient. The personalization of treatment can be based on the drug screening performed using patient-derived tumor xenografts or in vitro patient-derived cell models. 3D multicellular cancer spheroids, generated from cancer cell lines or tumor-isolated cells, seem to be a helpful tool for the improvement of current NSCLC therapies. Spheroids are used as a tumor-mimicking in vitro model for screening of novel drugs, analysis of intercellular interactions, and oncogenic cell signaling. Moreover, several studies with tumor-derived spheroids suggest this model for the choice of "personalized" therapy. Here we aim to give an overview of the different applications of NSCLC spheroids and discuss the potential contribution of the spheroid model to the development of anticancer strategies.
Collapse
Affiliation(s)
- Julian M Rozenberg
- Cell Signaling Regulation Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.,Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia
| | - Gleb I Filkov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Alexander V Trofimenko
- Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Evgeny A Karpulevich
- Department of Information Systems, Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow, Russia
| | - Vladimir D Parshin
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Valery V Royuk
- Clinical Center, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Marina I Sekacheva
- World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov First Moscow State Medical University, Moscow, Russia
| | - Mikhail O Durymanov
- Laboratory of Medical Informatics, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, Russia.,Special Cell Technology Laboratory, Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| |
Collapse
|
5
|
Lam M, Reales-Calderon JA, Ow JR, Adriani G, Pavesi A. In vitro 3D liver tumor microenvironment models for immune cell therapy optimization. APL Bioeng 2021; 5:041502. [PMID: 34632251 PMCID: PMC8492081 DOI: 10.1063/5.0057773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 08/03/2021] [Indexed: 12/24/2022] Open
Abstract
Despite diagnostic and therapeutic advances, liver cancer kills more than 18 million people every year worldwide, urging new strategies to model the disease and to improve the current therapeutic options. In vitro tumor models of human cancer continue to evolve, and they represent an important screening tool. However, there is a tremendous need to improve the physiological relevance and reliability of these in vitro models to fulfill today's research requirements for better understanding of cancer progression and treatment options at different stages of the disease. This review describes the hepatocellular carcinoma microenvironmental characteristics and illustrates the current immunotherapy strategy to fight the disease. Moreover, we present a recent collection of 2D and 3D in vitro liver cancer models and address the next generation of in vitro systems recapitulating the tumor microenvironment complexity in more detail.
Collapse
Affiliation(s)
- Maxine Lam
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jose Antonio Reales-Calderon
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Jin Rong Ow
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| | - Giulia Adriani
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (ASTAR), Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology, and Research (ASTAR), Singapore, Singapore
| |
Collapse
|
6
|
Ando Y, Mariano C, Shen K. Engineered in vitro tumor models for cell-based immunotherapy. Acta Biomater 2021; 132:345-359. [PMID: 33857692 PMCID: PMC8434941 DOI: 10.1016/j.actbio.2021.03.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 03/26/2021] [Accepted: 03/30/2021] [Indexed: 12/15/2022]
Abstract
Tumor immunotherapy is rapidly evolving as one of the major pillars of cancer treatment. Cell-based immunotherapies, which utilize patient's own immune cells to eliminate cancer cells, have shown great promise in treating a range of malignancies, especially those of hematopoietic origins. However, their performance on a broader spectrum of solid tumor types still fall short of expectations in the clinical stage despite promising preclinical assessments. In this review, we briefly introduce cell-based immunotherapies and the inhibitory mechanisms in tumor microenvironments that may have contributed to this discrepancy. Specifically, a major obstacle to the clinical translation of cell-based immunotherapies is in the lack of preclinical models that can accurately assess the efficacies and mechanisms of these therapies in a (patho-)physiologically relevant manner. Lately, tissue engineering and organ-on-a-chip tools and microphysiological models have allowed for more faithful recapitulation of the tumor microenvironments, by incorporating crucial tumor tissue features such as cellular phenotypes, tissue architecture, extracellular matrix, physical parameters, and their dynamic interactions. This review summarizes the existing engineered tumor models with a focus on tumor immunology and cell-based immunotherapy. We also discuss some key considerations for the future development of engineered tumor models for immunotherapeutics. STATEMENT OF SIGNIFICANCE: Cell-based immunotherapies have shown great promise in treating hematological malignancies and some epithelial tumors. However, their performance on a broader spectrum of solid tumor types still fall short of expectations. Major obstacles include the inhibitory mechanisms in tumor microenvironments (TME) and the lack of preclinical models that can accurately assess the efficacies and mechanisms of cellular therapies in a (patho-)physiologically relevant manner. In this review, we introduce recent progress in tissue engineering and microphysiological models for more faithful recapitulation of TME for cell-based immunotherapies, and some key considerations for the future development of engineered tumor models. This overview will provide a better understanding on the role of engineered models in accelerating immunotherapeutic discoveries and clinical translations.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Chelsea Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, United States; Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, United States; USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
7
|
Pozzi S, Scomparin A, Israeli Dangoor S, Rodriguez Ajamil D, Ofek P, Neufeld L, Krivitsky A, Vaskovich-Koubi D, Kleiner R, Dey P, Koshrovski-Michael S, Reisman N, Satchi-Fainaro R. Meet me halfway: Are in vitro 3D cancer models on the way to replace in vivo models for nanomedicine development? Adv Drug Deliv Rev 2021; 175:113760. [PMID: 33838208 DOI: 10.1016/j.addr.2021.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 03/24/2021] [Accepted: 04/01/2021] [Indexed: 12/12/2022]
Abstract
The complexity and diversity of the biochemical processes that occur during tumorigenesis and metastasis are frequently over-simplified in the traditional in vitro cell cultures. Two-dimensional cultures limit researchers' experimental observations and frequently give rise to misleading and contradictory results. Therefore, in order to overcome the limitations of in vitro studies and bridge the translational gap to in vivo applications, 3D models of cancer were developed in the last decades. The three dimensions of the tumor, including its cellular and extracellular microenvironment, are recreated by combining co-cultures of cancer and stromal cells in 3D hydrogel-based growth factors-inclusive scaffolds. More complex 3D cultures, containing functional blood vasculature, can integrate in the system external stimuli (e.g. oxygen and nutrient deprivation, cytokines, growth factors) along with drugs, or other therapeutic compounds. In this scenario, cell signaling pathways, metastatic cascade steps, cell differentiation and self-renewal, tumor-microenvironment interactions, and precision and personalized medicine, are among the wide range of biological applications that can be studied. Here, we discuss a broad variety of strategies exploited by scientists to create in vitro 3D cancer models that resemble as much as possible the biology and patho-physiology of in vivo tumors and predict faithfully the treatment outcome.
Collapse
Affiliation(s)
- Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anna Scomparin
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy
| | - Sahar Israeli Dangoor
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniel Rodriguez Ajamil
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Paula Ofek
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Lena Neufeld
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adva Krivitsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Daniella Vaskovich-Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Pradip Dey
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shani Koshrovski-Michael
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Noa Reisman
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ronit Satchi-Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
8
|
Tsuchiya H, Shiota G. Immune evasion by cancer stem cells. Regen Ther 2021; 17:20-33. [PMID: 33778133 PMCID: PMC7966825 DOI: 10.1016/j.reth.2021.02.006] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 02/10/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor immunity represents a new avenue for cancer therapy. Immune checkpoint inhibitors have successfully improved outcomes in several tumor types. In addition, currently, immune cell-based therapy is also attracting significant attention. However, the clinical efficacy of these treatments requires further improvement. The mechanisms through which cancer cells escape the immune response must be identified and clarified. Cancer stem cells (CSCs) play a central role in multiple aspects of malignant tumors. CSCs can initiate tumors in partially immunocompromised mice, whereas non-CSCs fail to form tumors, suggesting that tumor initiation is a definitive function of CSCs. However, the fact that non-CSCs also initiate tumors in more highly immunocompromised mice suggests that the immune evasion property may be a more fundamental feature of CSCs rather than a tumor-initiating property. In this review, we summarize studies that have elucidated how CSCs evade tumor immunity and create an immunosuppressive milieu with a focus on CSC-specific characteristics and functions. These profound mechanisms provide important clues for the development of novel tumor immunotherapies.
Collapse
Key Words
- ADCC, antibody-dependent cell mediated cytotoxicity
- ALDH, alcohol dehydrogenase
- AML, acute myeloid leukemia
- ARID3B, AT-rich interaction domain-containing protein 3B
- CCR7, C–C motif chemokine receptor 7
- CIK, cytokine-induced killer cell
- CMV, cytomegalovirus
- CSC, cancer stem cell
- CTL, cytotoxic T lymphocytes
- CTLA-4, cytotoxic T-cell-associated antigen-4
- Cancer stem cells
- DC, dendritic cell
- DNMT, DNA methyltransferase
- EMT, epithelial–mesenchymal transition
- ETO, fat mass and obesity associated protein
- EV, extracellular vesicle
- HNSCC, head and neck squamous cell carcinoma
- Immune checkpoints
- Immune evasion
- KDM4, lysine-specific demethylase 4C
- KIR, killer immunoglobulin-like receptor
- LAG3, lymphocyte activation gene 3
- LILR, leukocyte immunoglobulin-like receptor
- LMP, low molecular weight protein
- LOX, lysyl oxidase
- MDSC, myeloid-derived suppressor cell
- MHC, major histocompatibility complex
- MIC, MHC class I polypeptide-related sequence
- NGF, nerve growth factor
- NK cells
- NK, natural killer
- NOD, nonobese diabetic
- NSG, NOD/SCID IL-2 receptor gamma chain null
- OCT4, octamer-binding transcription factor 4
- PD-1, programmed death receptor-1
- PD-L1/2, ligands 1/2
- PI9, protease inhibitor 9
- PSME3, proteasome activator subunit 3
- SCID, severe combined immunodeficient
- SOX2, sex determining region Y-box 2
- T cells
- TAM, tumor-associated macrophage
- TAP, transporter associated with antigen processing
- TCR, T cell receptor
- Treg, regulatory T cell
- ULBP, UL16 binding protein
- uPAR, urokinase-type plasminogen activator receptor
Collapse
Affiliation(s)
- Hiroyuki Tsuchiya
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| | - Goshi Shiota
- Division of Medical Genetics and Regenerative Medicine, Department of Genomic Medicine and Regenerative Therapy, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, 683-8503, Japan
| |
Collapse
|
9
|
Cancer Stem Cells Are Possible Key Players in Regulating Anti-Tumor Immune Responses: The Role of Immunomodulating Molecules and MicroRNAs. Cancers (Basel) 2021; 13:cancers13071674. [PMID: 33918136 PMCID: PMC8037840 DOI: 10.3390/cancers13071674] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/05/2021] [Accepted: 03/09/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary This review provides a critical overview of the state of the art of the characterization of the immunological profile of a rare component of the tumors, denominated cancer stem cells (CSCs) or cancer initiating cells (CICs). These cells are endowed with the ability to form and propagate tumors and resistance to therapies, including the most innovative approaches. These investigations contribute to understanding the mechanisms regulating the interaction of CSCs/CICs with the immune system and identifying novel therapeutic approaches to render these cells visible and susceptible to immune responses. Abstract Cancer cells endowed with stemness properties and representing a rare population of cells within malignant lesions have been isolated from tumors with different histological origins. These cells, denominated as cancer stem cells (CSCs) or cancer initiating cells (CICs), are responsible for tumor initiation, progression and resistance to therapies, including immunotherapy. The dynamic crosstalk of CSCs/CICs with the tumor microenvironment orchestrates their fate and plasticity as well as their immunogenicity. CSCs/CICs, as observed in multiple studies, display either the aberrant expression of immunomodulatory molecules or suboptimal levels of molecules involved in antigen processing and presentation, leading to immune evasion. MicroRNAs (miRNAs) that can regulate either stemness properties or their immunological profile, with in some cases dual functions, can provide insights into these mechanisms and possible interventions to develop novel therapeutic strategies targeting CSCs/CICs and reverting their immunogenicity. In this review, we provide an overview of the immunoregulatory features of CSCs/CICs including miRNA profiles involved in the regulation of the interplay between stemness and immunological properties.
Collapse
|
10
|
Dai X, Guo Y, Hu Y, Bao X, Zhu X, Fu Q, Zhang H, Tong Z, Liu L, Zheng Y, Zhao P, Fang W. Immunotherapy for targeting cancer stem cells in hepatocellular carcinoma. Theranostics 2021; 11:3489-3501. [PMID: 33537099 PMCID: PMC7847682 DOI: 10.7150/thno.54648] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
The rapid development and remarkable success of checkpoint inhibitors have provided significant breakthroughs in cancer treatment, including hepatocellular carcinoma (HCC). However, only 15-20% of HCC patients can benefit from checkpoint inhibitors. Cancer stem cells (CSCs) are responsible for recurrence, metastasis, and local and systemic therapy resistance in HCC. Accumulating evidence has suggested that HCC CSCs can create an immunosuppressive microenvironment through certain intrinsic and extrinsic mechanisms, resulting in immune evasion. Intrinsic evasion mechanisms mainly include activation of immune-related CSC signaling pathways, low-level expression of antigen presenting molecules, and high-level expression of immunosuppressive molecules. External evasion mechanisms are mainly related to HBV/HCV infection, alcoholic/nonalcoholic steatohepatitis, hypoxia stimulation, abnormal angiogenesis, and crosstalk between CSCs and immune cells. A better understanding of the complex mechanisms of CSCs involved in immune evasion will contribute to therapies for HCC. Here we will outline the detailed mechanisms of immune evasion for CSCs, and provide an overview of the current immunotherapies targeting CSCs in HCC.
Collapse
MESH Headings
- Antigen Presentation/drug effects
- Antineoplastic Agents, Immunological/therapeutic use
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/immunology
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/therapy
- Fatty Liver/genetics
- Fatty Liver/immunology
- Fatty Liver/pathology
- Fatty Liver/therapy
- Gene Expression Regulation, Neoplastic
- Hepatitis B/genetics
- Hepatitis B/immunology
- Hepatitis B/pathology
- Hepatitis B/therapy
- Hepatitis C/genetics
- Hepatitis C/immunology
- Hepatitis C/pathology
- Hepatitis C/therapy
- Humans
- Immunologic Factors/therapeutic use
- Immunotherapy/methods
- Liver Neoplasms/genetics
- Liver Neoplasms/immunology
- Liver Neoplasms/pathology
- Liver Neoplasms/therapy
- Neoplasm Proteins/antagonists & inhibitors
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/immunology
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/therapy
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/pathology
- Neovascularization, Pathologic/genetics
- Neovascularization, Pathologic/immunology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Signal Transduction
- Tumor Escape/drug effects
- Tumor Microenvironment/drug effects
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
11
|
Quaglino E, Cavallo F, Conti L. Cancer stem cell antigens as targets for new combined anti-cancer therapies. Int J Biochem Cell Biol 2020; 129:105861. [PMID: 33031926 DOI: 10.1016/j.biocel.2020.105861] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/21/2020] [Accepted: 09/27/2020] [Indexed: 02/06/2023]
Abstract
The introduction of immune checkpoint inhibitors (ICI) has ushered in a new, golden age for cancer immunotherapy. However, their clinical success remains limited in several solid cancer types because of the low intrinsic immunogenicity of tumors and the development of immune escape mechanisms. Cancer stem cells (CSC), a small population of cancer cells that are responsible for tumor onset, metastatic spread and relapse after treatment, play a pivotal role in resistance to ICIs. The development of novel therapies that can target CSCs would thus improve the outcomes of current immunotherapy regimens. In this light, vaccines that target CSCs are a promising strategy. This paper briefly describes the immunologic properties of CSCs and their antigenic profile, and reviews current preclinical and clinical approaches that combine CSC-targeting vaccines with different synergistic therapies for the development of more effective antineoplastic treatments.
Collapse
Affiliation(s)
- Elena Quaglino
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, Italy.
| |
Collapse
|
12
|
Kang Y, Datta P, Shanmughapriya S, Ozbolat IT. 3D Bioprinting of Tumor Models for Cancer Research. ACS APPLIED BIO MATERIALS 2020; 3:5552-5573. [DOI: 10.1021/acsabm.0c00791] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Youngnam Kang
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology Shibpur, Howrah, West Bengal 711103, India
| | - Santhanam Shanmughapriya
- Department of Medicine, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Department of Cellular and Molecular Physiology, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
- Heart and Vascular Institute, Penn State University, College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Ibrahim T. Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University, University Park, Pennsylvania 16802, United States
- Engineering Science and Mechanics Department, Penn State University, University Park, Pennsylvania 16802, United States
- Biomedical Engineering Department, Penn State University, University Park, Pennsylvania 16802, United States
- Materials Research Institute, Penn State University, University Park, Pennsylvania 16802, United States
- Department of Neurosurgery, Penn State University, Hershey, Pennsylvania 17033, United States
| |
Collapse
|
13
|
Qian X, Leonard F, Wenhao Y, Sudhoff H, Hoffmann TK, Ferrone S, Kaufmann AM, Albers AE. Immunotherapeutics for head and neck squamous cell carcinoma stem cells. HNO 2020; 68:94-99. [PMID: 31996933 DOI: 10.1007/s00106-020-00819-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer stem cell (CSC)-related therapy resistance has become a new obstacle to the successful application of cancer treatment and head and neck squamous cell carcinoma (HNSCC) is no exception to this finding. Head and neck squamous cell carcinoma is highly immune-suppressive, and recently the immune suppression and invasion of HNSCC-CSCs have been characterized. These characteristics have received research and clinical attention because they would enable the stratification of patients into specific cancer subtypes and, consequently, the establishment of new therapeutic approaches with improved efficacy. This review discusses the feasibility of CSC-targeted strategies and their incorporation with nanotechnology to improve the efficacy of cancer immunotherapy.
Collapse
Affiliation(s)
- X Qian
- Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou, China.,Department of Clinical Laboratory, Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou, China.,Department of Clinical Laboratory, Zhejiang Cancer Hospital, Hangzhou, China.,Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - F Leonard
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Y Wenhao
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - H Sudhoff
- Department of Otolaryngology, Head and Neck Surgery, Medizinische Fakultät OWL, Klinikum Bielefeld, Universität Bielefeld, Bielefeld, Germany
| | - T K Hoffmann
- Department of Otolaryngology, Head and Neck Surgery, University of Ulm, Ulm, Germany
| | - S Ferrone
- Department of Surgery, Massachussets General Hospital, Harvard Medical School, Boston, MA, USA
| | - A M Kaufmann
- Clinic for Gynecology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - A E Albers
- Department of Otolaryngology, Head and Neck Surgery, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
14
|
Models for Monocytic Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32036607 DOI: 10.1007/978-3-030-35723-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.
Collapse
|
15
|
Ravindran S, Rasool S, Maccalli C. The Cross Talk between Cancer Stem Cells/Cancer Initiating Cells and Tumor Microenvironment: The Missing Piece of the Puzzle for the Efficient Targeting of these Cells with Immunotherapy. CANCER MICROENVIRONMENT 2019; 12:133-148. [PMID: 31758404 PMCID: PMC6937350 DOI: 10.1007/s12307-019-00233-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Accepted: 10/17/2019] [Indexed: 12/14/2022]
Abstract
Cancer Stem Cells/Cancer Initiating Cells (CSCs/CICs) is a rare sub-population within a tumor that is responsible for tumor formation, progression and resistance to therapies. The interaction between CSCs/CICs and tumor microenvironment (TME) can sustain “stemness” properties and promote their survival and plasticity. This cross-talk is also pivotal in regulating and modulating CSC/CIC properties. This review will provide an overview of the mechanisms underlying the mutual interaction between CSCs/CICs and TME. Particular focus will be dedicated to the immunological profile of CSCs/CICs and its role in orchestrating cancer immunosurveillance. Moreover, the available immunotherapy strategies that can target CSCs/CICs and of their possible implementation will be discussed. Overall, the dissection of the mechanisms regulating the CSC/CIC-TME interaction is warranted to understand the plasticity and immunoregulatory properties of stem-like tumor cells and to achieve complete eradications of tumors through the optimization of immunotherapy.
Collapse
Affiliation(s)
- Shilpa Ravindran
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Saad Rasool
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar
| | - Cristina Maccalli
- Research Department, Sidra Medicine, Al Luqta Street, PO Box 26999, Doha, Qatar.
| |
Collapse
|
16
|
Ruiu R, Tarone L, Rolih V, Barutello G, Bolli E, Riccardo F, Cavallo F, Conti L. Cancer stem cell immunology and immunotherapy: Harnessing the immune system against cancer's source. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 164:119-188. [PMID: 31383404 DOI: 10.1016/bs.pmbts.2019.03.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Despite recent advances in diagnosis and therapy having improved cancer outcome, many patients still do not respond to treatments, resulting in the progression or relapse of the disease, eventually impairing survival expectations. The limited efficacy of therapy is often attributable to its inability to affect cancer stem cells (CSCs), a small population of cells resistant to current radio- and chemo-therapies. CSCs are characterized by self-renewal and tumor-initiating capabilities, and function as a reservoir for the local and distant recurrence of the disease. Therefore, new therapeutic approaches able to effectively target and deplete CSCs are urgently needed. Immunotherapy is facing a renewed interest for its potential in cancer treatment, and the possibility of harnessing the immune system to target CSCs is being addressed by a new exciting research field. In this chapter, we discuss the cancer stem cell model and illustrate CSC biological and molecular properties, critically addressing theoretical and practical issues linked with their definition and study. We then review the existing literature regarding the immunological properties of CSCs and the complex interplay occurring between CSCs and immune cells. Finally, we present up-to-date studies on CSC immunotargeting and its potential future perspective. In conclusion, understanding the interplay between CSC biology and tumor immunology will provide a deeper understanding of the mechanisms that regulate CSC immunological properties. This will contribute to the design of new CSC-directed immunotherapeutic strategies with the potential of strongly improving cancer outcomes.
Collapse
Affiliation(s)
- Roberto Ruiu
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Lidia Tarone
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Valeria Rolih
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Giuseppina Barutello
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Elisabetta Bolli
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Riccardo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Federica Cavallo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy.
| | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
17
|
Adriani G, Pavesi A, Kamm RD. Studying TCR T cell anti-tumor activity in a microfluidic intrahepatic tumor model. Methods Cell Biol 2018; 146:199-214. [PMID: 30037462 DOI: 10.1016/bs.mcb.2018.05.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Adoptive cell therapy (ACT) is showing promising results in clinical trials but many challenges remain in understanding the key role of the tumor microenvironment. These challenges constitute a major barrier to advancing the field. Therefore, it is crucial to perform preclinical tests of the developed ACT strategies in a fast and reproducible way to assess the potential for patient therapy. Here, we describe the development of an intrahepatic tumor model in a microfluidic device for screening T cell-based immunotherapeutic strategies and the role of monocytes in these therapies. This system can be used to test also the effects of supporting cytokine administration and changes in oxygen level that are typically found in a liver tumor microenvironment. As a result, these 3D microfluidic assays provide a means to quantify T cell anti-tumor activity under different conditions to optimize existing therapeutic strategies or the design of new ones.
Collapse
Affiliation(s)
- Giulia Adriani
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Andrea Pavesi
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research, Singapore, Singapore
| | - Roger D Kamm
- BioSystems and Micromechanics IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
18
|
Zhang D, Tang DG, Rycaj K. Cancer stem cells: Regulation programs, immunological properties and immunotherapy. Semin Cancer Biol 2018; 52:94-106. [PMID: 29752993 DOI: 10.1016/j.semcancer.2018.05.001] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023]
Abstract
It is becoming increasingly clear that virtually all types of human cancers harbor a small population of stem-like cancer cells (i.e., cancer stem cells, CSCs). These CSCs preexist in primary tumors, can self-renew and are more tolerant of standard treatments, such as antimitotic and molecularly targeted agents, most of which preferentially eliminate differentiated and proliferating cancer cells. CSCs are therefore postulated as the root of therapy resistance, relapse and metastasis. Aside from surgery, radiation, and chemotherapy, immunotherapy is now established as the fourth pillar in the therapeutic armamentarium for patients with cancer, especially late-stage and advanced cancers. A better understanding of CSC immunological properties should lead to development of novel immunologic approaches targeting CSCs, which, in turn, may help prevent tumor recurrence and eliminate residual diseases. Here, with a focus on CSCs in solid tumors, we review CSC regulation programs and recent transcriptomics-based immunological profiling data specific to CSCs. By highlighting CSC antigens that could potentially be immunogenic, we further discuss how CSCs can be targeted immunologically.
Collapse
Affiliation(s)
- Dingxiao Zhang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Key Lab of Agricultural Animal Genetics, Breeding & Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Dean G Tang
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA; Cancer Stem Cell Institute, Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| | - Kiera Rycaj
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
19
|
Zhang XF, Weng DS, Pan K, Zhou ZQ, Pan QZ, Zhao JJ, Tang Y, Jiang SS, Chen CL, Li YQ, Zhang HX, Chang AE, Wicha MS, Zeng YX, Li Q, Xia JC. Dendritic-cell-based immunotherapy evokes potent anti-tumor immune responses in CD105+ human renal cancer stem cells. Mol Carcinog 2017; 56:2499-2511. [DOI: 10.1002/mc.22697] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Xiao-Fei Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - De-sheng Weng
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Ke Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Zi-Qi Zhou
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Qiu-zhong Pan
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Jing-Jing Zhao
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yan Tang
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Shan-Shan Jiang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Chang-Long Chen
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Yong-Qiang Li
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Hong-Xia Zhang
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| | - Alfred E. Chang
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Max S. Wicha
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | | | - Qiao Li
- University of Michigan Comprehensive Cancer Center; Ann Arbor Michigan
| | - Jian-Chuan Xia
- State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine; Sun Yat-sen University Cancer Center; Guangzhou People's Republic of China
- Department of Biotherapy; Sun Yat-Sen University Cancer Center; Guangzhou People's Republic of China
| |
Collapse
|
20
|
Ramachandran GK, Yeow CH. Proton NMR characterization of intact primary and metastatic melanoma cells in 2D & 3D cultures. Biol Res 2017; 50:12. [PMID: 28302167 PMCID: PMC5353880 DOI: 10.1186/s40659-017-0117-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/02/2017] [Indexed: 12/30/2022] Open
Abstract
Objective To characterize the differences between the primary and metastatic melanoma cell lines grown in 2D cultures and 3D cultures. Methods Primary melanoma cells (WM115) and metastatic melanoma cells (WM266) extracted from a single donor was cultured in 2D as well as 3D cultures. These cells were characterized using proton NMR spectrometry, and the qualitative chemical shifts markers were identified and discussed. Results In monolayer culture (2D), we observed one qualitative chemical shift marker for primary melanoma cells. In spheroid cultures (3D), we observed nine significant chemical shifts, of which eight markers were specific for primary melanoma spheroids, whereas the other one marker was specific to metastatic melanoma spheroids. This study suggests that the glucose accumulation and phospholipid composition vary significantly between the primary and metastatic cells lines that are obtained from a single donor and also with the cell culturing methods. 14 qualitative chemical shift markers were obtained in the comparison between monolayer culture and spheroids cultures irrespective of the differences in the cell lines. Among which 4 were unique to monolayer cultures whereas 10 chemical shifts were unique to the spheroid cultures. This study also shows that the method of cell culture would drastically affect the phospholipid composition of the cells and also depicts that the cells in spheroid culture closely resembles the cells in vivo. Conclusion This study shows the high specificity of proton NMR spectrometry in characterizing cancer cell lines and also shows the variations in the glucose accumulation and phospholipid composition between the primary and metastatic melanoma cell lines from the same donor. Differences in the cell culture method does plays an important role in phospholipid composition of the cells. Electronic supplementary material The online version of this article (doi:10.1186/s40659-017-0117-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Gokula Krishnan Ramachandran
- Department of Biomedical Engineering, National University of Singapore, E1-08-016, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - Chen Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, E1-08-016, 9 Engineering Drive 1, Singapore, 117575, Singapore.
| |
Collapse
|
21
|
Ramachandran GK, Yong WP, Yeow CH. Identification of Gastric Cancer Biomarkers Using 1H Nuclear Magnetic Resonance Spectrometry. PLoS One 2016; 11:e0162222. [PMID: 27611679 PMCID: PMC5017672 DOI: 10.1371/journal.pone.0162222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 08/18/2016] [Indexed: 12/16/2022] Open
Abstract
Existing gastric cancer diagnosing methods were invasive, hence, a reliable non-invasive gastric cancer diagnosing method is needed. As a starting point, we used 1H NMR for identifying gastric cancer biomarkers using a panel of gastric cancer spheroids and normal gastric spheroids. We were able to identify 8 chemical shift biomarkers for gastric cancer spheroids. Our data suggests that the cancerous and non-cancerous spheroids significantly differ in the lipid composition and energy metabolism. These results encourage the translation of these biomarkers into in-vivo gastric cancer detection methodology using MRI-MS.
Collapse
Affiliation(s)
| | - Wei Peng Yong
- Department of Haematology-Oncology, National University Cancer Institute, Singapore (NCIS), Singapore
| | - Chen Hua Yeow
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| |
Collapse
|
22
|
Adriani G, Pavesi A, Tan AT, Bertoletti A, Thiery JP, Kamm RD. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov Today 2016; 21:1472-1478. [PMID: 27185084 PMCID: PMC5035566 DOI: 10.1016/j.drudis.2016.05.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 04/07/2016] [Accepted: 05/09/2016] [Indexed: 01/02/2023]
Abstract
Current adoptive T cell therapies have shown promising results in clinical trials but need further development as an effective cancer treatment. Here, we discuss how 3D microfluidic tumour models mimicking the tumour microenvironment could help in testing T cell immunotherapies by assessing engineered T cells and identifying combinatorial therapy to improve therapeutic efficacy. We propose that 3D microfluidic systems can be used to screen different patient-specific treatments, thereby reducing the burden of in vivo testing and facilitating the rapid translation of successful T cell cancer immunotherapies to the clinic.
Collapse
Affiliation(s)
- Giulia Adriani
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore
| | - Andrea Pavesi
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore
| | - Anthony T Tan
- DUKE-NUS Graduate Medical School Singapore, Emerging Infectious Disease Program, 8 College Road, 169857, Singapore
| | - Antonio Bertoletti
- DUKE-NUS Graduate Medical School Singapore, Emerging Infectious Disease Program, 8 College Road, 169857, Singapore
| | - Jean Paul Thiery
- National University of Singapore, Department of Biochemistry, Yong Loo Lin School of Medicine MD7, 8 Medical Drive, 117597, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, 138602, Singapore; Massachusetts Institute of Technology, Department of Biological Engineering, 77 Massachusetts Avenue, 02139 Cambridge, MA, USA.
| |
Collapse
|
23
|
Anti-gastric cancer activity in three-dimensional tumor spheroids of bufadienolides. Sci Rep 2016; 6:24772. [PMID: 27098119 PMCID: PMC4838868 DOI: 10.1038/srep24772] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 03/29/2016] [Indexed: 12/12/2022] Open
Abstract
Multicellular spheroids of cancer cells have been increasingly used to screen anti-tumor compounds, owing to their in vivo like microenvironment and structure as well as compatibility to high-throughput/high-content screening. Here we report the potency and efficacy of a family of bufadienolides to inhibit the growth of gastric cancer cell line HGC-27 in three-dimensional (3D) spheroidal models. Examining the morphological and growth patterns of several cell lines in round-bottomed ultra-low attachment microplate suggested that HGC-27 cells formed reproducibly multicellular spheroidal structures. Profiling of 15 natural bufadienolides isolated from toad skin indicated that 8 14-hydroxy bufadienolides displayed inhibitory activity of the growth of HGC-27 spheroids in a dose-dependent manner. Notably, compared to clinical drugs taxol and epirubicin, active bufadienolides were found to penetrate more effectively into the HGC-27 spheroids, but with a narrower effective concentration range and a shorter lasting inhibitory effect. Furthermore, compared to two-dimensional (2D) cell monolayer assays, active bufadienolides exhibited weaker efficacy and different potency in 3D spheroid model, demonstrating the great potential of 3D multicellular cell spheroid models in anti-cancer drug discovery and development.
Collapse
|
24
|
Méry B, Guy JB, Espenel S, Wozny AS, Simonet S, Vallard A, Alphonse G, Ardail D, Rodriguez-Lafrasse C, Magné N. Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives. World J Stem Cells 2016; 8:13-21. [PMID: 26839637 PMCID: PMC4723718 DOI: 10.4252/wjsc.v8.i1.13] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/09/2015] [Accepted: 12/14/2015] [Indexed: 02/06/2023] Open
Abstract
Head and neck squamous cell cancer (HNSCC) is the sixth most common cancer in the world. Effective therapeutic modalities such as surgery, radiation, chemotherapy and combinations of each are used in the management of the disease. In most cases, treatment fails to obtain total cancer cure. In recent years, it appears that one of the key determinants of treatment failure may be the presence of cancer stem cells (CSCs) that escape currently available therapies. CSCs form a small portion of the total tumor burden but may play a disproportionately important role in determining outcomes. CSCs have stem features such as self-renewal, high migration capacity, drug resistance, high proliferation abilities. A large body of evidence points to the fact that CSCs are particularly resistant to radiotherapy and chemotherapy. In HNSCC, CSCs have been increasingly shown to have an integral role in tumor initiation, disease progression, metastasis and treatment resistance. In the light of such observations, the present review summarizes biological characteristics of CSCs in HNSCC, outlines targeted strategies for the successful eradication of CSCs in HNSCC including targeting the self-renewal controlling pathways, blocking epithelial mesenchymal transition, niche targeting, immunotherapy approaches and highlights the need to better understand CSCs biology for new treatments modalities.
Collapse
|
25
|
Lee CH, Yu CC, Wang BY, Chang WW. Tumorsphere as an effective in vitro platform for screening anti-cancer stem cell drugs. Oncotarget 2016; 7:1215-26. [PMID: 26527320 PMCID: PMC4811455 DOI: 10.18632/oncotarget.6261] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 10/14/2015] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) are a sub-population of cells within cancer tissues with tumor initiation, drug resistance and metastasis properties. CSCs also have been considered as the main cause of cancer recurrence. Targeting CSCs have been suggested as the key for successful treatment against cancer. Tumorsphere cultivation is based on culturing cancer cells onto ultralow attachment surface in serum-free media under the supplementation with growth factors such as epidermal growth factor and basic fibroblast growth factor. Tumorsphere cultivation is widely used to analyze the self-renewal capability of CSCs and to enrich these cells from bulk cancer cells. This method also provides a reliable platform for screening potential anti-CSC agents. The in vitro anti-proliferation activity of potential agents selected from tumorsphere assay is more translatable into in vivo anti-tumorigenic activity compared with general monolayer culture. Tumorsphere assay can also measure the outcome of clinical trials for potential anti-cancer agents. In addition, tumorsphere assay may be a promising strategy in the innovation of future cancer therapeutica and may help in the screening of anti-cancer small-molecule chemicals.
Collapse
Affiliation(s)
- Che-Hsin Lee
- Graduate Institute of Basic Medical Science, School of Medicine, China Medical University, Taichung City, Taiwan
- Department of Microbiology, School of Medicine, China Medical University, Taichung City, Taiwan
| | - Cheng-Chia Yu
- School of Dentistry, Chung Shan Medical University, Taichung City, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung City, Taiwan
- Institute of Oral Sciences, Chung Shan Medical University, Taichung City, Taiwan
| | - Bing-Yen Wang
- Institute of Medicine, Chung Shan Medical University, Taichung City, Taiwan
- Division of Thoracic Surgery, Department of Surgery, ChangHua Christian Hospital, ChangHua County, Taiwan
- School of Medicine, National Yang-Ming University, Taipei City, Taiwan
| | - Wen-Wei Chang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
26
|
Hirohashi Y, Torigoe T, Tsukahara T, Kanaseki T, Kochin V, Sato N. Immune responses to human cancer stem-like cells/cancer-initiating cells. Cancer Sci 2015; 107:12-7. [PMID: 26440127 PMCID: PMC4724814 DOI: 10.1111/cas.12830] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/27/2015] [Accepted: 09/29/2015] [Indexed: 12/20/2022] Open
Abstract
Cancer stem‐like cells (CSC)/cancer‐initiating cells (CIC) are defined as minor subpopulations of cancer cells that are endowed with properties of higher tumor‐initiating ability, self‐renewal ability and differentiation ability. Accumulating results of recent studies have revealed that CSC/CIC are resistant to standard cancer therapies, including chemotherapy, radiotherapy and molecular targeting therapy, and eradiation of CSC/CIC is, thus, critical to cure cancer. Cancer immunotherapy is expected to become the “fourth” cancer therapy. Cytotoxic T lymphocytes (CTL) play an essential role in immune responses to cancers, and CTL can recognize CSC/CIC in an antigen‐specific manner. CSC/CIC express several tumor‐associated antigens (TAA), and cancer testis (CT) antigens are reasonable sources for CSC/CIC‐targeting immunotherapy. In this review article, we discuss CSC/CIC recognition by CTL, regulation of immune systems by CSC/CIC, TAA expression in CSC/CIC, and the advantages of CSC/CIC‐targeting immunotherapy.
Collapse
Affiliation(s)
- Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Vitaly Kochin
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, South-1 West-17, Chuo-Ku, Sapporo, 060-8556, Japan
| |
Collapse
|
27
|
Qian X, Ma C, Nie X, Lu J, Lenarz M, Kaufmann AM, Albers AE. Biology and immunology of cancer stem(-like) cells in head and neck cancer. Crit Rev Oncol Hematol 2015; 95:337-45. [DOI: 10.1016/j.critrevonc.2015.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 03/14/2015] [Accepted: 03/30/2015] [Indexed: 12/22/2022] Open
|
28
|
Chandrasekaran S, Deng H, Fang Y. PTEN deletion potentiates invasion of colorectal cancer spheroidal cells through 3D Matrigel. Integr Biol (Camb) 2015; 7:324-334. [PMID: 25625883 DOI: 10.1039/c4ib00298a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PTEN (phosphatase and tensin homolog), a tumour suppressor negatively regulating the PI3K signalling pathway, is the second most frequently mutated gene in human cancers. Decreased PTEN expression is correlated with colorectal cancer metastases and poor patient survival. Three dimensional (3D) multicellular spheroid models have been postulated to bridge the gap between 2D cell models and animal models for cancer research and drug discovery. However, little is known about the impact of PTEN deletion on the invasion of colon cancer spheroidal cells through a 3D extracellular matrix, and current techniques are limited in their ability to study in vitro 3D cell models in real-time. Here, we investigated the migration and invasion behaviours of the colon cancer cell line HCT116 and its PTEN-/- isogenic cell line using three different in vitro assays, wound healing, transwell invasion, and label-free single cell 3D(2) invasion assays enabled by a resonant waveguide grating (RWG) biosensor. Light microscopic and RWG imaging showed that PTEN deletion influences the spheroid formation of HCT116 cells at high seeding density, and accelerates the spontaneous transfer from the spheroid to substrate surfaces. In vitro migration and invasion assays showed that PTEN knockout increases the 2D migration speed of HCT116 cells, and the invasion rate of individual cells through Matrigel or cells in the spheroid through 3D Matrigel; moreover, the PI3K inhibitor treatment drastically reduces the invasiveness of both cell lines. This study suggests that PTEN knockout potentiates the invasiveness of colorectal cancer spheroidal cells through a 3D extracellular matrix, and the label-free single cell assay is a powerful tool for investigating cancer cell invasion, in particular using 3D cell models.
Collapse
Affiliation(s)
- Siddarth Chandrasekaran
- Biochemical Technologies, Science and Technology Division, Corning Incorporated, Corning, NY 14831, USA.
| | | | | |
Collapse
|
29
|
Febles NK, Ferrie AM, Fang Y. Label-free single cell kinetics of the invasion of spheroidal colon cancer cells through 3D Matrigel. Anal Chem 2014; 86:8842-9. [PMID: 25118958 DOI: 10.1021/ac502269v] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This article reports label-free, real-time, and single-cell quantification of the invasion of spheroidal colon cancer cells through three-dimensional (3D) Matrigel using a resonant waveguide grating (RWG) imager. This imager employs a time-resolved swept wavelength interrogation scheme to monitor cell invasion and adhesion with a temporal resolution up to 3 s and a spatial resolution of 12 μm. As the model system, spheroids of human colorectal adenocarcinoma HT-29 cells are generated by culturing the cells in 96-well round-bottom ultralow attachment plates. 3D Matrigel is formed by its gelation in 384-well RWG biosensor microplates. The invasion and adhesion of spheroidal HT29 cells is initiated by placing individual spheroids onto the Matrigel-coated biosensors. The time series RWG images are obtained and used to extract the optical signatures arising from the adhesion after the cells are dissociated from the spheroids and invade through the 3D Matrigel. Compound profiling shows that epidermal growth factor accelerates cancer cell invasion, while vandetanib, a multitarget kinase inhibitor, dose-dependently inhibits invasion. This study demonstrates that the label-free imager can monitor in real-time the invasion of spheroidal cancer cells through 3D matrices.
Collapse
Affiliation(s)
- Nicole K Febles
- Biochemical Technologies, Science and Technology Division, Corning Incorporated , Corning, New York 14831, United States
| | | | | |
Collapse
|
30
|
Chen Z, Forman LW, Williams RM, Faller DV. Protein kinase C-δ inactivation inhibits the proliferation and survival of cancer stem cells in culture and in vivo. BMC Cancer 2014; 14:90. [PMID: 24528676 PMCID: PMC3927586 DOI: 10.1186/1471-2407-14-90] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/06/2014] [Indexed: 12/18/2022] Open
Abstract
Background A subpopulation of tumor cells with distinct stem-like properties (cancer stem-like cells, CSCs) may be responsible for tumor initiation, invasive growth, and possibly dissemination to distant organ sites. CSCs exhibit a spectrum of biological, biochemical, and molecular features that are consistent with a stem-like phenotype, including growth as non-adherent spheres (clonogenic potential), ability to form a new tumor in xenograft assays, unlimited self-renewal, and the capacity for multipotency and lineage-specific differentiation. PKCδ is a novel class serine/threonine kinase of the PKC family, and functions in a number of cellular activities including cell proliferation, survival or apoptosis. PKCδ has previously been validated as a synthetic lethal target in cancer cells of multiple types with aberrant activation of Ras signaling, using both genetic (shRNA and dominant-negative PKCδ mutants) and small molecule inhibitors. In contrast, PKCδ is not required for the proliferation or survival of normal cells, suggesting the potential tumor-specificity of a PKCδ-targeted approach. Methods shRNA knockdown was used validate PKCδ as a target in primary cancer stem cell lines and stem-like cells derived from human tumor cell lines, including breast, pancreatic, prostate and melanoma tumor cells. Novel and potent small molecule PKCδ inhibitors were employed in assays monitoring apoptosis, proliferation and clonogenic capacity of these cancer stem-like populations. Significant differences among data sets were determined using two-tailed Student’s t tests or ANOVA. Results We demonstrate that CSC-like populations derived from multiple types of human primary tumors, from human cancer cell lines, and from transformed human cells, require PKCδ activity and are susceptible to agents which deplete PKCδ protein or activity. Inhibition of PKCδ by specific genetic strategies (shRNA) or by novel small molecule inhibitors is growth inhibitory and cytotoxic to multiple types of human CSCs in culture. PKCδ inhibition efficiently prevents tumor sphere outgrowth from tumor cell cultures, with exposure times as short as six hours. Small-molecule PKCδ inhibitors also inhibit human CSC growth in vivo in a mouse xenograft model. Conclusions These findings suggest that the novel PKC isozyme PKCδ may represent a new molecular target for cancer stem cell populations.
Collapse
Affiliation(s)
| | | | | | - Douglas V Faller
- Cancer Center, Boston University School of Medicine, K-712C, 72 E, Concord St,, Boston, MA 02118, USA.
| |
Collapse
|