1
|
Gu J, Huang X, Zhang Y, Bao C, Zhou Z, Tong H, Jin J. Cerebrospinal fluid interleukin-6 is a potential diagnostic biomarker for central nervous system involvement in adult acute myeloid leukemia. Front Oncol 2022; 12:1013781. [DOI: 10.3389/fonc.2022.1013781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 11/14/2022] [Indexed: 12/03/2022] Open
Abstract
ObjectiveWe evaluated the correlation between cerebrospinal fluid (CSF) cytokine levels and central nervous system (CNS) involvement in adult acute myeloid leukemia (AML).MethodsThe study sample consisted of 90 patients diagnosed with AML and 20 with unrelated CNS involvement. The AML group was divided into two sub-groups: those with (CNS+, n=30) and without CNS involvement (CNS-, n=60). We used a cytometric bead assay to measure CSF interleukin (IL)-2, IL-4, IL-6, and IL-10, tumor necrosis factor-α, interferon-γ, and IL-17A. We used receiver operating characteristic curves to evaluate the ability of CSF cytokine levels to identify CNS involvement in adult AML.ResultsCSF IL-6 levels were significantly higher in CNS+adult AML patients and positively correlated with the lactate dehydrogenase levels (r=0.738, p<0.001) and white blood cell (WBC) count (r=0.455, p=0.012) in the blood, and the protein (r=0.686, p<0.001) as well as WBC count in the CSF (r=0.427, p=0.019). Using a CSF IL-6 cut-off value of 8.27 pg/ml yielded a diagnostic sensitivity and specificity was 80.00% and 88.46%, respectively (AUC, 0.8923; 95% CI, 0.8168–0.9678). After treating a subset of tested patients, their CSF IL-6 levels decreased. Consequently, the elevated CSF IL-6 levels remaining in CNS+ adult AML patients post-treatment were associated with disease progression.ConclusionCSF IL-6 is a promising marker for the diagnosis of adult AML with CNS involvement and a crucial dynamic indicator for therapeutic response.
Collapse
|
2
|
Sharma ND, Keewan E, Matlawska-Wasowska K. Metabolic Reprogramming and Cell Adhesion in Acute Leukemia Adaptation to the CNS Niche. Front Cell Dev Biol 2021; 9:767510. [PMID: 34957100 PMCID: PMC8703109 DOI: 10.3389/fcell.2021.767510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Involvement of the Central Nervous System (CNS) in acute leukemia confers poor prognosis and lower overall survival. Existing CNS-directed therapies are associated with a significant risk of short- or long-term toxicities. Leukemic cells can metabolically adapt and survive in the microenvironment of the CNS. The supporting role of the CNS microenvironment in leukemia progression and dissemination has not received sufficient attention. Understanding the mechanism by which leukemic cells survive in the nutrient-poor and oxygen-deprived CNS microenvironment will lead to the development of more specific and less toxic therapies. Here, we review the current literature regarding the roles of metabolic reprogramming in leukemic cell adhesion and survival in the CNS.
Collapse
Affiliation(s)
- Nitesh D Sharma
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Esra'a Keewan
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| | - Ksenia Matlawska-Wasowska
- Department of Pediatrics, Division of Hematology-Oncology, University of New Mexico Health Sciences Center, Albuquerque, NM, United States.,Comprehensive Cancer Center, University of New Mexico, Albuquerque, NM, United States
| |
Collapse
|
3
|
Yu W, Si M, Li L, He P, Fan Z, Zhang Q, Jiao X. Biomarkers Reflecting The Destruction Of The Blood-Brain Barrier Are Valuable In Predicting The Risk Of Lymphomas With Central Nervous System Involvement. Onco Targets Ther 2019; 12:9505-9512. [PMID: 31807026 PMCID: PMC6857655 DOI: 10.2147/ott.s222432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/25/2019] [Indexed: 02/05/2023] Open
Abstract
OBJECTIVE We aimed to identify the biomarkers in cerebrospinal fluid (CSF) that facilitate the diagnosis of lymphomas with central nervous system (CNS) involvement. METHODS Four cases of non-Hodgkin's lymphoma (NHL) patients with/without CNS involvement were enrolled respectively, and non-CNS tumor patients (n=3) were selected to be the controls. Lab biomarkers, cytokines, and tight junction proteins (TJs) in CSF and serum were measured. RESULTS When comparing the CNS to non-CNS group, cytokine including MMP-9 (15.24 vs 0.36 ng/mL), CCL-2 (1922.04 vs 490.68 pg/mL), and sVCAM-1 (61.36 vs 9.00 pg/mL), TJs including OCLN (6.68 vs 2.59 pg/mL), and ZO-1 (710.04 vs 182.98 pg/mL) in CSF were significantly higher in lymphomas patients with CNS involvement than those without CNS involvement. However, serum biomarkers were not significantly elevated. Contrary to the major findings, all conventional biomarkers and MRI results showed no significant change. CONCLUSION CSF biomarkers affecting BBB disruption are valuable in mirroring the risk of lymphoma CNS metastasis. Further study with a larger sample size is needed to verify these biomarkers in predicting lymphoma CNS involvement.
Collapse
Affiliation(s)
- Wenjun Yu
- Department of Hematology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Mengya Si
- Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Li Li
- Obstetrics Department, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Ping He
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Zhiqiang Fan
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
| | - Qiaoxin Zhang
- Clinical Laboratory, The First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong515041, People’s Republic of China
| | - Xiaoyang Jiao
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People’s Republic of China
- Correspondence: Xiaoyang Jiao Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Guangdong515041, People’s Republic of China Email
| |
Collapse
|
4
|
Si M, Jiao X, Li Y, Chen H, He P, Jiang F. The role of cytokines and chemokines in the microenvironment of the blood-brain barrier in leukemia central nervous system metastasis. Cancer Manag Res 2018; 10:305-313. [PMID: 29483784 PMCID: PMC5815469 DOI: 10.2147/cmar.s152419] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AIM Central nervous system (CNS) metastasis is a major obstacle in the treatment of leukemia, and the underlying mechanisms of leukemia CNS metastasis are not fully understood. The present study is an investigation of the role of the CNS microenvironment in leukemia CNS metastasis. METHODS Analog blood-brain barrier (BBB) was set by coculturing human brain microvascular endothelial cells (HBMVECs) and leukemia cells (U937 and IL-60), as well as HBMVECs and sera from leukemia patients, in vitro. The permeability of the HBMVEC monolayer and the levels of tight junction proteins, cytokines and chemokines (C&Ckines) were measured. RESULTS The permeability of HBMVECs increased when cocultured with leukemia sera. The expression of C&Ckines was significantly upregulated in HBMVECs cocultured with leukemia sera or leukemia cells, compared to the normal sera (P<0.05, respectively). Specifically, significantly higher levels of vascular endothelial growth factor A (VEGF-A) and matrix metalloprotease 9 (MMP-9) were found in HBMVECs and leukemia cells/sera coculturing systems. CONCLUSION Both leukemia cells and the molecules in leukemia sera play an important role in leukemia CNS metastasis. VEGF-A and MMPs may be the main factors resulting in the degradation of the BBB and inducing the CNS migration of leukemia cells.
Collapse
Affiliation(s)
- Mengya Si
- The First Affiliated Hospital of Shantou University Medical College
| | - Xiaoyang Jiao
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Yazhen Li
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Huanzhu Chen
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Ping He
- Cell Biology and Genetics Department, Shantou University Medical College, Shantou, People’s Republic of China
| | - Fang Jiang
- The First Affiliated Hospital of Shantou University Medical College
- Correspondence Fang Jiang, The First Affiliated Hospital of Shantou University Medical College, 57 Changping Road, Shantou, Guangdong 515041, People’s Republic of China, Email
| |
Collapse
|
5
|
Demaree CJ, Soliz JM, Gebhardt R. Cancer Seeding Risk from an Epidural Blood Patch in Patients with Leukemia or Lymphoma. PAIN MEDICINE 2016; 18:786-790. [DOI: 10.1093/pm/pnw218] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Ophthalmic Manifestations of Hematopoietic Malignancy. Case Rep Ophthalmol Med 2016; 2016:6074968. [PMID: 27375913 PMCID: PMC4914723 DOI: 10.1155/2016/6074968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 05/09/2016] [Indexed: 12/17/2022] Open
Abstract
Purpose. To report the ocular findings in patients with hematopoietic malignancy with optic nerve involvement and abducens nerve palsy. Methods. The medical records of all cases of hematopoietic cancer with ophthalmic involvements seen in the Department of Ophthalmology of the National Center for Global Health and Medicine between 2009 and 2014 were reviewed. Results. Eight patients with hematopoietic cancer with optic nerve invasion or abducens nerve palsy were studied. The primary diseases were 3 cases of multiple myeloma, 1 case of acute lymphocytic leukemia, 1 case of follicular lymphoma, and 3 cases of AIDS-related lymphoma. Six cases had optic nerve invasion, 2 cases had abducens nerve palsy, and 1 case had optic nerve invasion of both eyes. The median visual acuity of eyes with optic nerve invasion was 0.885 logarithm of the minimum angle of resolution (logMAR) units. The final visual acuity of eyes with optic nerve invasion was 1.25 logMAR units, and that of those with sixth-nerve palsy was −0.1 logMAR units. Six cases died during the five-year follow-up period. An ophthalmic involvement in patients with hematopoietic cancer, especially AIDS-related lymphoma, was associated with poor prognosis. Conclusion. Because ophthalmic involvement in patients with hematopoietic malignancy has a poor prognosis, an early diagnosis of the cancers by the ophthalmologic findings by ophthalmologists could improve the prognosis.
Collapse
|
7
|
Vandenhaute E, Drolez A, Sevin E, Gosselet F, Mysiorek C, Dehouck MP. Adapting coculture in vitro models of the blood-brain barrier for use in cancer research: maintaining an appropriate endothelial monolayer for the assessment of transendothelial migration. J Transl Med 2016; 96:588-98. [PMID: 26901835 DOI: 10.1038/labinvest.2016.35] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 01/06/2016] [Accepted: 01/14/2016] [Indexed: 12/14/2022] Open
Abstract
Although brain metastases are the most common brain tumors in adults, there are few treatment options in this setting. To colonize the brain, circulating tumor cells must cross the blood-brain barrier (BBB), which is situated within specialized, restrictive microvascular endothelium. Understanding how cancer cells manage to transmigrate through the BBB might enable this process to be prevented. In vitro models are dedicated tools for characterizing the cellular and molecular mechanisms that underlie transendothelial migration process, as long as they accurately mimic the brain endothelium's in vivo characteristics. The objective of the present study was to adapt an existing in vitro model of the human BBB for use in studying cancer cell transmigration. The model is based on the coculture of endothelial cells (ECs, derived from cord blood hematopoietic stem cells) and brain pericytes. To allow the migration of cancer cells into the lower compartment, our model had to be transposed onto inserts with a larger pore size. However, we encountered a problem when culturing ECs on large (3-μm)-pore inserts: the cells crossed the membrane and formed a non-physiological second layer on the lower face of the insert. Using 3-μm-pore inserts (in a 12-well plate format), we report here on a method that enables the maintenance of a single monolayer of ECs on the insert's upper face only. Under these chosen conditions, the ECs exhibited typical BBB properties found in the original model (including restricted paracellular permeability and the expression of continuous tight junctions). This modified in vitro model of the human BBB enabled us to investigate the migratory potential of the MDA-MB-231 cell line (derived from highly metastatic human breast cancer cells). Last, the results obtained were compared with the rate of transmigration through endothelia with no BBB features.
Collapse
Affiliation(s)
- Elodie Vandenhaute
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| | - Aurore Drolez
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| | - Emmanuel Sevin
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| | - Fabien Gosselet
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| | - Caroline Mysiorek
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| | - Marie-Pierre Dehouck
- Laboratoire de la Barrière Hémato-Encéphalique-EA 2465, Faculté des Sciences Jean Perrin, Université d'Artois, LBHE, Lens, France
| |
Collapse
|
8
|
Si MY, Fan ZC, Li YZ, Chang XL, Xie QD, Jiao XY. The prognostic significance of serum and cerebrospinal fluid MMP-9, CCL2 and sVCAM-1 in leukemia CNS metastasis. J Neurooncol 2015; 122:229-44. [PMID: 25630624 DOI: 10.1007/s11060-014-1707-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/24/2014] [Indexed: 02/05/2023]
Abstract
Metastasis to the central nervous system (CNS) is the primary obstacle in leukemia treatment. Matrix metalloproteinase-9 (MMP-9), chemokine ligand-2 (CCL2) and soluble vascular adhesion molecule-1 (sVCAM-1) play crucial roles in tumor cell adhesion, motivation and survival, but their roles in leukemia CNS metastasis remain to be elucidated. We investigated the prognostic significance of serum and cerebrospinal fluid (CSF) MMP-9, CCL2 and sVCAM-1 in leukemia patients to explore their potential as predictive biomarkers of the development of CNS leukemia (CNSL). MMP-9, CCL2 and sVCAM-1 were measured in paired CSF and serum samples collecting from 33 leukemia patients with or without CNS metastasis. Other risk factors related to CNSL prognosis were also analyzed. sVCAM-1Serum and CCL2Serum/CSF were significantly higher in the CNSL group than in the non-CNSL group and the controls (p < 0.05). MMP-9Serum was insignificantly lower in the CNSL group than in the non-CNSL group and the controls (p > 0.05). No differences were found for the sVCAM-1Serum, CCL2Serum, and MMP-9Serum levels between non-CNSL patients and controls (p > 0.05). MMP-9CSF was significantly higher in the CNSL group than both the non-CNSL and the control groups (p < 0.05). The indexes of sVCAM-1, CCL2, and MMP-9 in the CNSL group were lower than in the controls (p < 0.05). Positive correlations were determined between the MMP-9CSF and the ALBCSF/BBB value/WBCCSF, between sVCAM-1Serum and the WBCCSF/BBB value. Negative correlations existed between MMP-9Serum and the ALBCSF/BBB value/WBCCSF, and between the CCL2 index and ALBCSF. sVCAM-1Serum was positively associated with event-free survival (EFS), and patients with higher levels of ALBCSF, MMP-9CSF/Serum, CCL2CSF/Serum, and sVCAM-1CSF/Serum had shorter EFS. MMP-9CSF, CCL2CSF and sVCAM-1CSF are the first three principal components analyzed by cluster and principal component analysis. Our data suggest that MMP-9, CCL2 and sVCAM-1 in the CSF may be more potent than serum in predicting the possibility of leukemia metastatic CNS and the outcome of CNSL patients.
Collapse
Affiliation(s)
- Meng-Ya Si
- Department of Cell Biology and Genetics, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, Guangdong, China
| | | | | | | | | | | |
Collapse
|