1
|
Metrangolo V, Ploug M, Engelholm LH. The Urokinase Receptor (uPAR) as a "Trojan Horse" in Targeted Cancer Therapy: Challenges and Opportunities. Cancers (Basel) 2021; 13:cancers13215376. [PMID: 34771541 PMCID: PMC8582577 DOI: 10.3390/cancers13215376] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/15/2021] [Accepted: 10/19/2021] [Indexed: 12/23/2022] Open
Abstract
Simple Summary Discovered more than three decades ago, the urokinase-type plasminogen activator receptor (uPAR) has now firmly established itself as a versatile molecular target holding promise for the treatment of aggressive malignancies. The copious abundance of uPAR in virtually all human cancerous tissues versus their healthy counterparts has fostered a gradual shift in the therapeutic landscape targeting this receptor from function inhibition to cytotoxic approaches to selectively eradicate the uPAR-expressing cells by delivering a targeted cytotoxic insult. Multiple avenues are being explored in a preclinical setting, including the more innovative immune- or stroma targeting therapies. This review discusses the current state of these strategies, their potentialities, and challenges, along with future directions in the field of uPAR targeting. Abstract One of the largest challenges to the implementation of precision oncology is identifying and validating selective tumor-driving targets to enhance the therapeutic efficacy while limiting off-target toxicity. In this context, the urokinase-type plasminogen activator receptor (uPAR) has progressively emerged as a promising therapeutic target in the management of aggressive malignancies. By focalizing the plasminogen activation cascade and subsequent extracellular proteolysis on the cell surface of migrating cells, uPAR endows malignant cells with a high proteolytic and migratory potential to dissolve the restraining extracellular matrix (ECM) barriers and metastasize to distant sites. uPAR is also assumed to choreograph multiple other neoplastic stages via a complex molecular interplay with distinct cancer-associated signaling pathways. Accordingly, high uPAR expression is observed in virtually all human cancers and is frequently associated with poor patient prognosis and survival. The promising therapeutic potential unveiled by the pleiotropic nature of this receptor has prompted the development of distinct targeted intervention strategies. The present review will focus on recently emerged cytotoxic approaches emphasizing the novel technologies and related limits hindering their application in the clinical setting. Finally, future research directions and emerging opportunities in the field of uPAR targeting are also discussed.
Collapse
Affiliation(s)
- Virginia Metrangolo
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Michael Ploug
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| | - Lars H. Engelholm
- The Finsen Laboratory, Rigshospitalet, DK-2200 Copenhagen, Denmark; (V.M.); (M.P.)
- Biotech Research & Innovation Centre (BRIC), Department of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
- Correspondence: ; Tel.: +45-31-43-20-77
| |
Collapse
|
2
|
Leth JM, Ploug M. Targeting the Urokinase-Type Plasminogen Activator Receptor (uPAR) in Human Diseases With a View to Non-invasive Imaging and Therapeutic Intervention. Front Cell Dev Biol 2021; 9:732015. [PMID: 34490277 PMCID: PMC8417595 DOI: 10.3389/fcell.2021.732015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 07/26/2021] [Indexed: 12/31/2022] Open
Abstract
The interaction between the serine protease urokinase-type plasminogen activator (uPA) and its glycolipid-anchored receptor (uPAR) focalizes plasminogen activation to cell surfaces, thereby regulating extravascular fibrinolysis, cell adhesion, and migration. uPAR belongs to the Ly6/uPAR (LU) gene superfamily and the high-affinity binding site for uPA is assembled by a dynamic association of its three consecutive LU domains. In most human solid cancers, uPAR is expressed at the invasive areas of the tumor-stromal microenvironment. High levels of uPAR in resected tumors or shed to the plasma of cancer patients are robustly associated with poor prognosis and increased risk of relapse and metastasis. Over the years, a plethora of different strategies to inhibit uPA and uPAR function have been designed and investigated in vitro and in vivo in mouse models, but so far none have been implemented in the clinics. In recent years, uPAR-targeting with the intent of cytotoxic eradication of uPAR-expressing cells have nonetheless gained increasing momentum. Another avenue that is currently being explored is non-invasive imaging with specific uPAR-targeted reporter-molecules containing positron emitting radionuclides or near-infrared (NIR) florescence probes with the overarching aim of being able to: (i) localize disease dissemination using positron emission tomography (PET) and (ii) assist fluorescence guided surgery using optical imaging. In this review, we will discuss these advancements with special emphasis on applications using a small 9-mer peptide antagonist that targets uPAR with high affinity.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Michael Ploug
- Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark.,Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Bharadwaj AG, Dahn ML, Liu RZ, Colp P, Thomas LN, Holloway RW, Marignani PA, Too CKL, Barnes PJ, Godbout R, Marcato P, Waisman DM. S100A10 Has a Critical Regulatory Function in Mammary Tumor Growth and Metastasis: Insights Using MMTV-PyMT Oncomice and Clinical Patient Sample Analysis. Cancers (Basel) 2020; 12:cancers12123673. [PMID: 33297495 PMCID: PMC7762402 DOI: 10.3390/cancers12123673] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/05/2023] Open
Abstract
Simple Summary The key challenges that face patients during breast cancer therapy is the metastatic spread and aggressiveness of the disease. Thus, the goal of current breast cancer research is to discover new therapeutic and diagnostic targets that limit the aggressive spread of the cancer. In this study, we investigated the role of protein S100A10 (p11) in breast tumor growth, progression, and metastasis using mouse cancer models and patient tumor sample analysis. We have demonstrated in our previous studies that p11 is critical for the function of a proteolytic enzyme–plasmin, which aids in the digestion of the tissues surrounding the tumor and allows the escape of the cancer cells from the breast tissue to organs such as the lungs and bone. Here, we present evidence that genetic deletion of p11 results in smaller and less aggressive mammary tumors in mice. We also observed that the cancer spread to the lungs is dramatically reduced in the absence of p11 gene in mice. Subsequent analysis of breast cancer patient tissues showed a correlation between higher p11 expression and both poor survival and aggressive cancer. Abstract S100A10 (p11) is a plasminogen receptor that regulates cellular plasmin generation by cancer cells. In the current study, we used the MMTV-PyMT mouse breast cancer model, patient tumor microarray, and immunohistochemical (IHC) analysis to investigate the role of p11 in oncogenesis. The genetic deletion of p11 resulted in significantly decreased tumor onset, growth rate, and spontaneous pulmonary metastatic burden in the PyMT/p11-KO (knock-out) mice. This phenotype was accompanied by substantial reduction in Ki67 positivity, macrophage infiltration, decreased vascular density in the primary tumors, and decrease in invasive carcinoma and pulmonary metastasis. Surprisingly, IHC analysis of wild-type MMTV-PyMT mice failed to detect p11 expression in the tumors or metastatic tumor cells and loss of p11 did not decrease plasmin generation in the PyMT tumors and cells. Furthermore, tumor cells expressing p11 displayed dramatically reduced lung metastasis when injected into p11-depleted mice, further strengthening the stromal role of p11 in tumor growth and metastasis. Transcriptome analysis of the PyMT tumors from p11-KO mice showed marked reduction in genes such as Areg, Muc1, and S100a8 involved in breast cancer development, progression, and inflammation. The PyMT/p11-KO tumors displayed a remarkable increase in inflammatory cytokines such as interleukin (Il)-6, Il-10, and interferon (Ifn)-γ. Gene expression profiling and IHC of primary breast cancer samples showed that p11 mRNA and protein levels were significantly higher in tumor tissues compared to normal mammary tissue. P11 mRNA expression was significantly associated with poor patient prognosis and significantly elevated in high grade, triple negative (TN) tumors, and tumors with high proliferative index. This is the first study examining the crucial role of p11 in breast tumor development and metastasis, thus emphasizing its potential as a diagnostic and prognostic biomarker in breast cancer.
Collapse
Affiliation(s)
- Alamelu G. Bharadwaj
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Margaret L. Dahn
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Rong-Zong Liu
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Patricia Colp
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Lynn N. Thomas
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Ryan W. Holloway
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Paola A. Marignani
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Catherine K. L. Too
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
| | - Penelope J. Barnes
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB T6G 2Z1, Canada; (R.-Z.L.); (R.G.)
| | - Paola Marcato
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Microbiology and Immunology, Dalhousie University, NS B3H 4R2, Canada
| | - David M. Waisman
- Department of Pathology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (A.G.B.); (M.L.D.); (P.C.); (P.J.B.); (P.M.)
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (L.N.T.); (R.W.H.); (P.A.M.); (C.K.L.T.)
- Correspondence:
| |
Collapse
|
4
|
Silencing of uPAR via RNA interference inhibits invasion and migration of oral tongue squamous cell carcinoma. Oncol Lett 2018; 16:3983-3991. [PMID: 30128018 DOI: 10.3892/ol.2018.9094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 05/01/2018] [Indexed: 12/13/2022] Open
Abstract
Overexpression of urokinase-type plasminogen activator receptor (uPAR) has been implicated in promoting tumor invasion in various cancer types, including oral tongue squamous cell carcinoma (OTSCC); therefore, the effect of suppressing uPAR expression on the invasive and metastatic potential of OTSCC was investigated. A total of 65 paraffin-embedded tissues were obtained from patients with OTSCC. Immunohistochemistry was used to determine the expression level of uPAR. The Ts cells transfected with short hairpin RNA targeting uPAR were constructed and validated. The cells were used in a number of in vitro analyses, including migration, invasion and western blot analysis assays. Furthermore, a mouse lung metastatic model was used to detect the metastatic ability of OTSCC cells in the lungs. OTSCC cell metastasis and relapse were determined to be associated with uPAR immunopositivity. Inhibition of uPAR expression in Ts cells demonstrated a 40% decrease in migration and a 60% decrease in invasion in vitro, with an associated downregulation of matrix metalloprotease (MMP)-2, MMP-9 and phosphorylated extracellular signal-regulated kinase. In vivo analysis indicated a 90% decrease in the number of mice bearing macroscopic lung metastases. In conclusion, the present study demonstrated that the targeting of uPAR-inhibited cellular proliferation and invasion would provide a potential treatment for OTSCC in the future.
Collapse
|
5
|
Eden G, Archinti M, Arnaudova R, Andreotti G, Motta A, Furlan F, Citro V, Cubellis MV, Degryse B. D2A sequence of the urokinase receptor induces cell growth through αvβ3 integrin and EGFR. Cell Mol Life Sci 2018; 75:1889-1907. [PMID: 29184982 PMCID: PMC11105377 DOI: 10.1007/s00018-017-2718-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 11/08/2017] [Accepted: 11/22/2017] [Indexed: 01/01/2023]
Abstract
The urokinase receptor (uPAR) stimulates cell proliferation by forming a macromolecular complex with αvβ3 integrin and the epidermal growth factor receptor (EGFR, ErbB1 or HER1) that we name the uPAR proliferasome. uPAR transactivates EGFR, which in turn mediates uPAR-initiated mitogenic signal to the cell. EGFR activation and EGFR-dependent cell growth are blocked in the absence of uPAR expression or when uPAR activity is inhibited by antibodies against either uPAR or EGFR. The mitogenic sequence of uPAR corresponds to the D2A motif present in domain 2. NMR analysis revealed that D2A synthetic peptide has a particular three-dimensional structure, which is atypical for short peptides. D2A peptide is as effective as EGF in promoting EGFR phosphorylation and cell proliferation that were inhibited by AG1478, a specific inhibitor of the tyrosine kinase activity of EGFR. Both D2A and EGF failed to induce proliferation of NR6-EGFR-K721A cells expressing a kinase-defective mutant of EGFR. Moreover, D2A peptide and EGF phosphorylate ERK demonstrating the involvement of the MAP kinase signalling pathway. Altogether, this study reveals the importance of sequence D2A of uPAR, and the interdependence of uPAR and EGFR.
Collapse
Affiliation(s)
- Gabriele Eden
- IFOM, FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
- Medical Clinic V, Teaching Hospital Braunschweig, Salzdahlumer Straße 90, 38126, Brunswick, Germany
| | - Marco Archinti
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Ralitsa Arnaudova
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
| | - Giuseppina Andreotti
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Andrea Motta
- Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche, Via Campi Flegrei 34, 80078, Pozzuoli (Naples), Italy
| | - Federico Furlan
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy
- BoNetwork Programme, San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Citro
- Dipartimento di Biologia, Università Federico II, Naples, Italy
| | | | - Bernard Degryse
- Department of Molecular Biology and Functional Genomics, DIBIT, Università Vita-Salute San Raffaele, Via Olgettina 58, 20132, Milan, Italy.
| |
Collapse
|