1
|
Li S, Li Q, Zhou Q, Li S, Wang S, Yao Q, Ouyang C, Liu C, Li M. Attenuating Atherosclerosis through Inhibition of the NF- κB/NLRP3/IL-1 β Pathway-Mediated Pyroptosis in Vascular Smooth Muscle Cells (VSMCs). Cardiovasc Ther 2024; 2024:1506083. [PMID: 39742016 PMCID: PMC10985643 DOI: 10.1155/2024/1506083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 01/03/2025] Open
Abstract
Objective We investigated the effects of resveratrol (Res) and MCC950 on the pyroptosis of vascular smooth muscle cells (VSMCs) and the potential pathway. Methods and Results Compared with the control (Con) group, the atherosclerosis (AS) group showed calcified nodules, which suggested that the calcification medium induced the calcification of VSMCs. VSMCs showed proliferative activity and significantly attenuated calcification under treatment with 10 μmol/L Res. The calcium salt was detected by alizarin red S staining. Res and MCC950 downregulated the calcification, inflammatory, pyroptosis, and transcription factor-related indicators all decreased by RT-qPCR with Western blot and immunofluorescence. The results showed that Res and MCC950 refrained the calcification of VSMCs and that Res has a better effect than MCC950. Plaques and calcium salt deposits were present in the carotid region in the control group. More calcium salt deposits were evident in the plaques of the Par group by HE staining and alizarin red S staining. The calcification indexes BMP2, Runx2, and related indexes declined by immunofluorescence, which showed parthenolide-inhibited AS. The related protein expressions were consistent with the expression of the cell experiments. Conclusion Our data demonstrated that inflammatory response and pyroptosis exacerbate AS and unravel the link between VSMCs and the progression of AS lesions. Res and MCC950 inhibited the calcification of VSMCs by regulating NF-κB/NLRP3/IL-1β signaling axis. P53 can exacerbate the AS lesions by acting on NLRP3 inflammasome and pyroptosis. Our findings supported the clinical applications of Res and MCC950 in VSMCs individuals to counteract pyroptosis and AS, and P53 inhibitors also can be a potential treatment for AS.
Collapse
MESH Headings
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- NLR Family, Pyrin Domain-Containing 3 Protein/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Myocytes, Smooth Muscle/metabolism
- Pyroptosis/drug effects
- Signal Transduction/drug effects
- NF-kappa B/metabolism
- Vascular Calcification/pathology
- Vascular Calcification/metabolism
- Vascular Calcification/drug therapy
- Interleukin-1beta/metabolism
- Resveratrol/pharmacology
- Cells, Cultured
- Furans/pharmacology
- Sulfonamides/pharmacology
- Disease Models, Animal
- Animals
- Anti-Inflammatory Agents/pharmacology
- Male
- Indenes/pharmacology
- Plaque, Atherosclerotic
- Inflammasomes/metabolism
- Humans
- Atherosclerosis/pathology
- Atherosclerosis/metabolism
- Atherosclerosis/drug therapy
- Atherosclerosis/genetics
- Carotid Artery Diseases/pathology
- Carotid Artery Diseases/metabolism
- Carotid Artery Diseases/drug therapy
- Carotid Artery Diseases/genetics
Collapse
Affiliation(s)
- Shihuan Li
- College of Medicine, Hubei University of Science and Technology, Xianning 437100, China
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Qingjie Li
- College of Medicine, Hubei University of Science and Technology, Xianning 437100, China
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Qiaofeng Zhou
- College of Medicine, Hubei University of Science and Technology, Xianning 437100, China
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Suqin Li
- School of Basic Medical Science, Hubei University of Science and Technology, Xianning, China
| | - Siqi Wang
- College of Medicine, Hubei University of Science and Technology, Xianning 437100, China
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Qing Yao
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Changhan Ouyang
- College of Medicine, Hubei University of Science and Technology, Xianning 437100, China
| | - Chao Liu
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
| | - Mincai Li
- Institute of Medicine, Hubei Key Laboratory of Diabetes, Hubei University of Science and Technology, Xianning, China
- School of Basic Medical Science, Hubei University of Science and Technology, Xianning, China
| |
Collapse
|
2
|
Macke AJ, Petrosyan A. Alcohol and Prostate Cancer: Time to Draw Conclusions. Biomolecules 2022; 12:375. [PMID: 35327568 PMCID: PMC8945566 DOI: 10.3390/biom12030375] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/18/2022] [Accepted: 02/24/2022] [Indexed: 01/25/2023] Open
Abstract
It has been a long-standing debate in the research and medical societies whether alcohol consumption is linked to the risk of prostate cancer (PCa). Many comprehensive studies from different geographical areas and nationalities have shown that moderate and heavy drinking is positively correlated with the development of PCa. Nevertheless, some observations could not confirm that such a correlation exists; some even suggest that wine consumption could prevent or slow prostate tumor growth. Here, we have rigorously analyzed the evidence both for and against the role of alcohol in PCa development. We found that many of the epidemiological studies did not consider other, potentially critical, factors, including diet (especially, low intake of fish, vegetables and linoleic acid, and excessive use of red meat), smoking, family history of PCa, low physical activity, history of high sexual activities especially with early age of first intercourse, and sexually transmitted infections. In addition, discrepancies between observations come from selectivity criteria for control groups, questionnaires about the type and dosage of alcohol, and misreported alcohol consumption. The lifetime history of alcohol consumption is critical given that a prostate tumor is typically slow-growing; however, many epidemiological observations that show no association monitored only current or relatively recent drinking status. Nevertheless, the overall conclusion is that high alcohol intake, especially binge drinking, is associated with increased risk for PCa, and this effect is not limited to any type of beverage. Alcohol consumption is also directly linked to PCa lethality as it may accelerate the growth of prostate tumors and significantly shorten the time for the progression to metastatic PCa. Thus, we recommend immediately quitting alcohol for patients diagnosed with PCa. We discuss the features of alcohol metabolism in the prostate tissue and the damaging effect of ethanol metabolites on intracellular organization and trafficking. In addition, we review the impact of alcohol consumption on prostate-specific antigen level and the risk for benign prostatic hyperplasia. Lastly, we highlight the known mechanisms of alcohol interference in prostate carcinogenesis and the possible side effects of alcohol during androgen deprivation therapy.
Collapse
Affiliation(s)
- Amanda J. Macke
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Armen Petrosyan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA;
- The Fred and Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| |
Collapse
|
3
|
Morel KL, Hamid AA, Clohessy JG, Pandell N, Ellis L, Sweeney CJ. NF-κB Blockade with Oral Administration of Dimethylaminoparthenolide (DMAPT), Delays Prostate Cancer Resistance to Androgen Receptor (AR) Inhibition and Inhibits AR Variants. Mol Cancer Res 2021; 19:1137-1145. [PMID: 33863813 PMCID: PMC8254800 DOI: 10.1158/1541-7786.mcr-21-0099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/20/2021] [Accepted: 04/08/2021] [Indexed: 01/03/2023]
Abstract
NF-κB activation has been linked to prostate cancer progression and is commonly observed in castrate-resistant disease. It has been suggested that NF-κB-driven resistance to androgen-deprivation therapy (ADT) in prostate cancer cells may be mediated by aberrant androgen receptor (AR) activation and AR splice variant production. Preventing resistance to ADT may therefore be achieved by using NF-κB inhibitors. However, low oral bioavailability and high toxicity of NF-κB inhibitors is a major challenge for clinical translation. Dimethylaminoparthenolide (DMAPT) is an oral NF-κB inhibitor in clinical development and has already shown favorable pharmacokinetic and pharmacodyanamic data in patients with heme malignancies, including decrease of NF-κB in circulating leuchemic blasts. Here, we report that activation of NF-κB/p65 by castration in mouse and human prostate cancer models resulted in a significant increase in AR variant-7 (AR-V7) expression and modest upregulation of AR. In vivo castration of VCaP-CR tumors resulted in significant upregulation of phosphorylated-p65 and AR-V7, which was attenuated by combination with DMAPT and DMAPT increased the efficacy of AR inhibition. We further demonstrate that the effects of DMAPT-sensitizing prostate cancer cells to castration were dependent on the ability of DMAPT to inhibit phosphorylated-p65 function. IMPLICATIONS: Our study shows that DMAPT, an oral NF-κB inhibitor in clinical development, inhibits phosphorylated-p65 upregulation of AR-V7 and delays prostate cancer castration resistance. This provides rationale for the development of DMAPT as a novel therapeutic strategy to increase durable response in patients receiving AR-targeted therapy.
Collapse
MESH Headings
- Administration, Oral
- Androgen Receptor Antagonists/pharmacology
- Animals
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Gene Expression Profiling/methods
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Kaplan-Meier Estimate
- Male
- Mice, Inbred ICR
- Mice, SCID
- NF-kappa B/antagonists & inhibitors
- NF-kappa B/metabolism
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Protein Isoforms/antagonists & inhibitors
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Sesquiterpenes/administration & dosage
- Sesquiterpenes/pharmacology
- Mice
Collapse
Affiliation(s)
- Katherine L Morel
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Anis A Hamid
- Department of Medical Oncology, Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- University of Melbourne, Melbourne, VIC, Australia
| | - John G Clohessy
- Department of Medicine, Preclinical Murine Pharmacogenetics Facility, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Nicole Pandell
- Department of Medicine, Preclinical Murine Pharmacogenetics Facility, Cancer Research Institute, Beth Israel Deaconess Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Leigh Ellis
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
- The Broad Institute, Cambridge, Massachusetts
| | - Christopher J Sweeney
- Department of Medical Oncology, Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- The Broad Institute, Cambridge, Massachusetts
| |
Collapse
|
4
|
Morel KL, Ormsby RJ, Klebe S, Sweeney CJ, Sykes PJ. DMAPT is an Effective Radioprotector from Long-Term Radiation-Induced Damage to Normal Mouse Tissues In Vivo. Radiat Res 2019; 192:231-239. [PMID: 31095445 DOI: 10.1667/rr15404.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
While radiotherapy is widely used in cancer treatment, the benefits can be limited by radiation-induced damage to neighboring healthy tissues. We previously demonstrated in mice that the anti-inflammatory compound dimethylaminoparthenolide (DMAPT) selectively induces radiosensitivity in prostate tumor tissue from transgenic adenocarcinoma of mouse prostate (TRAMP) mice, while simultaneously protecting healthy tissues from 6 Gy whole-body radiation-induced apoptosis. Here, we examined the radioprotective effect of DMAPT on fibrosis in normal tissues after a partial-body fractionated radiation protocol that more closely mimics the image-guided fractionated radiotherapy protocols used clinically. Male C57BL/6J mice, 16 weeks old, received 20 Gy fractionated doses of X rays (2 Gy daily fractions, five days/week for two weeks) or sham irradiation to the lower abdomen, with or without a prior 20 mGy dose to mimic an image dose. In addition, mice received thrice weekly DMAPT (100 mg/kg by oral gavage) or vehicle control from 15 weeks of age until time of analysis at 6 weeks postirradiation. In the absence of exposure to radiation, there were no significant differences observed in the tissues of DMAPT and vehicle-treated mice (P > 0.05). DMAPT treatment significantly reduced radiation-induced testis weight loss by 60.9% (P < 0.0001), protected against a decrease in the seminiferous tubule diameter by 42.1% (P < 0.0001) and largely preserved testis morphology. Inclusion of the image dose had no significant effect on testis mass, seminiferous tubule diameter or testis morphology. DMAPT reduced radiation-induced fibrosis in the corpus cavernous region of the penis (98.1% reduction, P = 0.009) and in the muscle layer around the bladder (80.1% reduction, P = 0.0001). There was also a trend towards reduced collagen infiltration into the submucosal and muscle layers in the rectum. These results suggest that DMAPT could be useful in providing protection from the radiation-induced side effects of impotence and infertility, urinary incontinence and fecal urgency resulting from prostate cancer radiotherapy. DMAPT is a very well-tolerated drug and can conveniently be delivered orally without strict time windows relative to radiation exposure. Protection of normal tissues by DMAPT could potentially be useful in radiotherapy of other cancer types as well.
Collapse
Affiliation(s)
- Katherine L Morel
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia.,c Dana-Farber Cancer Institute, Harvard University, Boston, Massachusetts
| | - Rebecca J Ormsby
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| | - Sonja Klebe
- b Department of Anatomical Pathology, Flinders University and SA Pathology, Flinders Medical Centre, Bedford Park, South Australia, Australia
| | | | - Pamela J Sykes
- a Flinders Centre for Innovation in Cancer, Flinders University and Medical Centre, Bedford Park, Adelaide, South Australia, Australia
| |
Collapse
|
5
|
Xiao Q, Zhang S, Yang C, Du R, Zhao J, Li J, Xu Y, Qin Y, Gao Y, Huang W. Ginsenoside Rg1 Ameliorates Palmitic Acid-Induced Hepatic Steatosis and Inflammation in HepG2 Cells via the AMPK/NF- κB Pathway. Int J Endocrinol 2019; 2019:7514802. [PMID: 31467529 PMCID: PMC6699274 DOI: 10.1155/2019/7514802] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 04/16/2019] [Accepted: 05/05/2019] [Indexed: 12/12/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the common diseases in the world, and it can progress from simple lipid accumulation to sustained inflammation. The present study was designed to investigate the effects and underlying mechanisms of ginsenoside Rg1 (G-Rg1) treatment on NAFLD in vitro. HepG2 cells were treated with palmitic acid (PA) to induce steatosis and inflammation and then successively incubated with G-Rg1. Lipids accumulation was analyzed by Oil Red O staining and intracellular triglyceride (TG) quantification. Inflammatory conditions were examined by quantifying the levels of cell supernatant alanine transaminase/aspartate aminotransferase (ALT/AST) and secretory proinflammatory cytokines, including IL-1β, IL-6, and TNF-α in the cell supernatants. Quantitative RT-PCR and western blotting were used to measure the expressions of genes and proteins associated with lipogenic synthesis and inflammation, including AMP-activated protein kinase (AMPK) and nuclear factor-kappa B (NF-κB) pathways. HepG2 cells were pretreated with an AMPK inhibitor; then, Oil Red O staining and TG quantification were performed to study the lipid deposition. Phospho-AMPK (Thr172) (p-AMPK) and phospho-acetyl-CoA carboxylase (Ser79) (p-ACCα) were quantified by immunoblotting. Immunofluorescence was performed to demonstrate the nuclear translocation of NF-κB P65. The present study showed that PA markedly increased the intracellular lipid droplets accumulation and TG levels, but decreased AMPK phosphorylation and the expressions of its downstream lipogenic genes. However, G-Rg1 alleviated hepatic steatosis and reduced the intracellular TG content; these changes were accompanied by the activation of the AMPK pathway. In addition, blocking AMPK by using the AMPK inhibitor markedly abolished the G-Rg1-mediated protection against PA-induced lipid deposition in HepG2 cells. Furthermore, G-Rg1 reduced the ALT/AST levels and proinflammatory cytokines release, which were all enhanced by PA. These effects were correlated with the inactivation of the NF-κB pathway and translocation of P65 from the cytoplasm to the nucleus. Overall, these results suggest that G-Rg1 effectively ameliorates hepatic steatosis and inflammation, which might be associated with the AMPK/NF-κB pathway.
Collapse
Affiliation(s)
- Qing Xiao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shujun Zhang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Cheng Yang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ruoyang Du
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqiu Zhao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiajun Li
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yashu Xu
- Department of General Medicine, People's Hospital of Chongqing Bishan District, Chongqing, China
| | - Yuanyuan Qin
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Yue Gao
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wenxiang Huang
- Chongqing Key Laboratory of Infectious Diseases and Parasitic Diseases, Department of Infectious Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|