1
|
Nguyen D, Jeon HM, Lee J. Tissue factor links inflammation, thrombosis, and senescence in COVID-19. Sci Rep 2022; 12:19842. [PMID: 36400883 PMCID: PMC9673213 DOI: 10.1038/s41598-022-23950-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/08/2022] [Indexed: 11/21/2022] Open
Abstract
COVID-19 is a highly contagious respiratory infection caused by the SARS-CoV-2 virus. The infected lung epithelial cells secrete a group of chemokines and cytokines, which triggers harmful cytokine storms and hyper-thrombotic responses. Recent studies have proposed that viral-induced senescence is responsible for cytokine release and inflammation in COVID-19 patients. However, it is unknown whether cellular senescence is commonly triggered after viral infection and how inflammation and thrombosis, hyper-activated in these patients, are functionally connected. To address these questions, we conducted a bioinformatics-based meta-analysis using single-cell and bulk RNA sequencing datasets obtained from human patient studies, animal models, and cell lines infected with SARS-CoV-2 and other respiratory viruses. We found that the senescence phenotype is robustly upregulated in most SARS-CoV-2-infected patients, especially in the infected lung epithelial cells. Notably, the upregulation of Tissue factor (F3), a key initiator of the extrinsic blood coagulation pathway, occurs concurrently with the upregulation of the senescence-associated secretory phenotype (SASP) factors. Furthermore, F3 levels are positively correlated with the senescence and hyper-coagulation gene signatures in COVID-19 patients. Together, these data demonstrate the prevalence of senescence in respiratory viral infection and suggest F3 as a critical link between inflammation, thrombosis, and senescence in these disease states.
Collapse
Affiliation(s)
- Dayna Nguyen
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hye-Min Jeon
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Jeongwu Lee
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
2
|
Vahidfar N, Eppard E, Farzanehfar S, Yordanova A, Fallahpoor M, Ahmadzadehfar H. An Impressive Approach in Nuclear Medicine: Theranostics. PET Clin 2021; 16:327-340. [PMID: 34053577 DOI: 10.1016/j.cpet.2021.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Radiometal-based theranostics or theragnostics, first used in the early 2000s, is the combined application of diagnostic and therapeutic agents that target the same molecule, and represents a considerable advancement in nuclear medicine. One of the promising fields related to theranostics is radioligand therapy. For instance, the concepts of targeting the prostate-specific membrane antigen (PSMA) for imaging and therapy in prostate cancer, or somatostatin receptor targeted imaging and therapy in neuroendocrine tumors (NETs) are part of the field of theranostics. Combining targeted imaging and therapy can improve prognostication, therapeutic decision-making, and monitoring of the therapy.
Collapse
Affiliation(s)
- Nasim Vahidfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Elisabeth Eppard
- Positronpharma SA, Santiago, Chile; Department of Nuclear Medicine, University Hospital Magdeburg, Germany
| | - Saeed Farzanehfar
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Fallahpoor
- Department of Nuclear Medicine, Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Jmel MA, Aounallah H, Bensaoud C, Mekki I, Chmelař J, Faria F, M’ghirbi Y, Kotsyfakis M. Insights into the Role of Tick Salivary Protease Inhibitors during Ectoparasite-Host Crosstalk. Int J Mol Sci 2021; 22:E892. [PMID: 33477394 PMCID: PMC7831016 DOI: 10.3390/ijms22020892] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 02/07/2023] Open
Abstract
Protease inhibitors (PIs) are ubiquitous regulatory proteins present in all kingdoms. They play crucial tasks in controlling biological processes directed by proteases which, if not tightly regulated, can damage the host organism. PIs can be classified according to their targeted proteases or their mechanism of action. The functions of many PIs have now been characterized and are showing clinical relevance for the treatment of human diseases such as arthritis, hepatitis, cancer, AIDS, and cardiovascular diseases, amongst others. Other PIs have potential use in agriculture as insecticides, anti-fungal, and antibacterial agents. PIs from tick salivary glands are special due to their pharmacological properties and their high specificity, selectivity, and affinity to their target proteases at the tick-host interface. In this review, we discuss the structure and function of PIs in general and those PI superfamilies abundant in tick salivary glands to illustrate their possible practical applications. In doing so, we describe tick salivary PIs that are showing promise as drug candidates, highlighting the most promising ones tested in vivo and which are now progressing to preclinical and clinical trials.
Collapse
Affiliation(s)
- Mohamed Amine Jmel
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Hajer Aounallah
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Chaima Bensaoud
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| | - Imen Mekki
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Jindřich Chmelař
- Faculty of Science, University of South Bohemia in České Budějovice, 37005 České Budějovice, Czech Republic;
| | - Fernanda Faria
- Innovation and Development Laboratory, Innovation and Development Center, Instituto Butantan, São Paulo 05503-900, Brazil;
| | - Youmna M’ghirbi
- Institut Pasteur de Tunis, Université de Tunis El Manar, LR19IPTX, Service d’Entomologie Médicale, Tunis 1002, Tunisia; (H.A.); (Y.M.)
| | - Michalis Kotsyfakis
- Laboratory of Genomics and Proteomics of Disease Vectors, Biology Centre CAS, Institute of Parasitology, Branišovská 1160/31, 37005 České Budějovice, Czech Republic; (M.A.J.); (C.B.); (I.M.)
| |
Collapse
|