1
|
Lázari C, Riva-Rossi C, Ciancio J, Pascual M, Clemento AJ, Pearse DE, Garza JC. Ancestry and genetic structure of resident and anadromous rainbow trout (Oncorhynchus mykiss) in Argentina. JOURNAL OF FISH BIOLOGY 2024; 104:1972-1989. [PMID: 38556852 DOI: 10.1111/jfb.15722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 12/21/2023] [Accepted: 02/25/2024] [Indexed: 04/02/2024]
Abstract
Since the first introduction from North America more than a century ago, rainbow trout (Oncorhynchus mykiss) have rapidly established self-sustaining populations in major river basins of Patagonia. Many generations later, only the freshwater resident life history is expressed in the Chubut and Negro rivers of northern Argentinian Patagonia, whereas both the resident and anadromous life histories are found in the Santa Cruz River of southern Argentina. Despite previous studies that have tried to identify the sources of these introduced populations, uncertainty still exists. Here we combined data from many single-nucleotide polymorphisms and microsatellite loci in O. mykiss populations from Argentina and North America to evaluate putative source populations, gene flow between Argentinian river basins, and genetic diversity differences between Argentinian and North American populations. We found that populations from northern and southern Patagonia are highly differentiated and have limited gene flow between them. Phylogeographic analysis also confirmed that they have separate origins, with the northern populations most closely related to the domesticated rainbow trout strains that are raised worldwide and the Santa Cruz River populations most closely related to North American populations from California and Oregon that have an anadromous component. In addition, fish with different life histories in the Santa Cruz River were found to constitute a single interbreeding population. No evidence was found of reduced genetic variation in introduced rainbow trout, suggesting multiple contributing sources. In spite of these advances in understanding, significant questions remain regarding the origins and evolution of the introduced O. mykiss in Patagonia.
Collapse
Affiliation(s)
- Carolina Lázari
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, California, USA
| | - Carla Riva-Rossi
- Instituto de Diversidad y Evolución Austral (IDEAus-CONICET), Puerto Madryn, Argentina
| | - Javier Ciancio
- Centro para el Estudio de Sistemas Marinos (CESIMAR-CONICET), Puerto Madryn, Argentina
| | - Miguel Pascual
- Instituto Patagónico para el Estudio de los Ecosistemas Continentales (IPEEC-CONICET), Puerto Madryn, Argentina
| | - Anthony J Clemento
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, California, USA
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| | - Devon E Pearse
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, California, USA
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| | - John Carlos Garza
- Ocean Sciences Department, University of California Santa Cruz, Santa Cruz, California, USA
- Southwest Fisheries Science Center, National Oceanic and Atmospheric Administration, Santa Cruz, California, USA
| |
Collapse
|
2
|
Longo A, Kurta K, Vanhala T, Jeuthe H, de Koning DJ, Palaiokostas C. Genetic diversity patterns in farmed rainbow trout (Oncorhynchus mykiss) populations using genome-wide SNP and haplotype data. Anim Genet 2024; 55:87-98. [PMID: 37994156 DOI: 10.1111/age.13378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 10/25/2023] [Accepted: 11/01/2023] [Indexed: 11/24/2023]
Abstract
Rainbow trout is one of the most popular aquaculture species worldwide, with a long history of domestication. However, limited information exists about the genetic diversity of farmed rainbow trout populations globally, with most available reports relying on low-throughput genotyping technologies. Notably, no information exists about the genetic diversity status of farmed rainbow trout in Sweden. Double-digest restriction-site-associated DNA sequencing was performed on more than 500 broodfish from two leading producers in Sweden and from the country's national breeding program. Following the detection of single nucleotide polymorphisms (SNPs), genetic diversity was studied by using either individual SNPs (n = 8680; one SNP retained per 300 bp sequence reads) or through SNP haplotypes (n = 20 558; all SNPs retained in 300 bp sequence reads). Similar amounts of genetic diversity were found amongst the three populations when individual SNPs were used. Furthermore, principal component analysis and discriminant analysis of principal components suggested two genetic clusters with the two industry populations grouped together. Genetic differentiation based on the FST fixation index was ~0.01 between the industry populations and ~0.05 when those were compared with the breeding program. Preliminary estimates of effective population size (Ne ) and inbreeding (based on runs of homozygosity; FROH ) were similar amongst the three populations (Ne ≈ 50-80; median FROH ≈ 0.11). Finally, the haplotype-based analysis suggested that animals from the breeding program had higher shared coancestry levels than those from the other two populations. Overall, our study provides novel insights into the genetic diversity and structure of Sweden's three main farmed rainbow trout populations, which could guide their future management.
Collapse
Affiliation(s)
- Alessio Longo
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Khrystyna Kurta
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Tytti Vanhala
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Henrik Jeuthe
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Aquaculture Center North, Kälarne, Sweden
| | - Dirk-Jan de Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Christos Palaiokostas
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
3
|
Dressler TL, Han Lee V, Klose K, Eliason EJ. Thermal tolerance and vulnerability to warming differ between populations of wild Oncorhynchus mykiss near the species' southern range limit. Sci Rep 2023; 13:14538. [PMID: 37666931 PMCID: PMC10477306 DOI: 10.1038/s41598-023-41173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/23/2023] [Indexed: 09/06/2023] Open
Abstract
Fish habitat temperatures are increasing due to human impacts including climate change. For broadly distributed species, thermal tolerance can vary at the population level, making it challenging to predict which populations are most vulnerable to warming. Populations inhabiting warm range boundaries may be more resilient to these changes due to adaptation or acclimatization to warmer temperatures, or they may be more vulnerable as temperatures may already approach their physiological limits. We tested functional and critical thermal tolerance of two populations of wild Oncorhynchus mykiss near the species' southern range limit and, as predicted, found population-specific responses to temperature. Specifically, the population inhabiting the warmer stream, Piru Creek, had higher critical thermal maxima and higher functional thermal tolerance compared to the population from the cooler stream, Arroyo Seco. Arroyo Seco O. mykiss are more likely to experience a limitation of aerobic scope with warming. Piru Creek O. mykiss, however, had higher resting metabolic rates and prolonged exercise recovery, meaning that they could be more vulnerable to warming if prey or dissolved oxygen become limited. Temperature varies widely between streams near the O. mykiss southern range limit and populations will likely have unique responses to warming based on their thermal tolerances and metabolic requirements.
Collapse
Affiliation(s)
- T L Dressler
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - V Han Lee
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA
| | - K Klose
- U.S. Forest Service, Los Padres National Forest, 1980 Old Mission Drive, Solvang, CA, 93463, USA
| | - E J Eliason
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, 93106, USA.
| |
Collapse
|
4
|
Campbell MA, Anderson EC, Garza JC, Pearse DE. Polygenic basis and the role of genome duplication in adaptation to similar selective environments. J Hered 2021; 112:614-625. [PMID: 34420047 DOI: 10.1093/jhered/esab049] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/20/2021] [Indexed: 02/02/2023] Open
Abstract
Genetic changes underlying adaptation vary greatly in terms of complexity and, within the same species, genetic responses to similar selective pressures may or may not be the same. We examine both complex (supergene) and simple (SNP) genetic variants occurring in populations of rainbow trout (Oncorhynchus mykiss) independently isolated from ocean access and compared them to each other and to an anadromous below-barrier population representing their ancestral source to search for signatures of both parallel and non-parallel adaptation. All landlocked populations displayed an increased frequency of a large inversion on chromosome Omy05, while three of the four populations exhibited elevated frequencies of another inversion located on chromosome Omy20. In addition, we identified numerous regions outside these two inversions that also show significant shifts in allele frequencies consistent with adaptive evolution. However, there was little concordance among above-barrier populations in these specific genomic regions under selection. In part, the lack of concordance appears to arise from ancestral autopolyploidy in rainbow trout that provides duplicate genomic regions of similar functional composition for selection to act upon. Thus, while selection acting on landlocked populations universally favors the resident ecotype, outside of the major chromosomal inversions, the resulting genetic changes are largely distinct among populations. Our results indicate that selection on standing genetic variation is likely the primary mode of rapid adaptation, and that both supergene complexes and individual loci contribute to adaptive evolution, further highlighting the diversity of adaptive genomic variation involved in complex phenotypic evolution.
Collapse
Affiliation(s)
- Matthew A Campbell
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, USA
| | - Eric C Anderson
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - John Carlos Garza
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| | - Devon E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, Santa Cruz, CA, USA
| |
Collapse
|
5
|
Bielikova ОY, Mariutsa AE, Mruk AI, Tarasjuk SI, Romanenko VM. Genetic structure of rainbow trout Oncorhynchus mykiss (Salmoniformes, Salmonidae) from aquaculture by DNA-markers. BIOSYSTEMS DIVERSITY 2021. [DOI: 10.15421/012104] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
The rational use of valuable fish species from aquaculture is difficult to implement without knowledge of the state of the genetic structure of local stocks. Different types of DNA markers can be used to achieve the goals of selection and breeding work. The genetic structure of a local stock of rainbow trout (Oncorhynchus mykiss Walbaum, 1792) (Salmoniformes, Salmonidae) farmed in Ukraine was studied using DNA-markers: microsatellite (SSR-markers – simple-sequence repeats-markers) and intermicrosatellite (ISSR – inter-simple sequence repeat). Five fragments of trinucleotide microsatellite motifs with a single anchor nucleotide at the 3'-end were used as a primer for analysis by the ISSR-PCR method. Totally, 85 amplicons were obtained across the five loci, of which 92.9% were polymorphic. The total number of alleles ranged from 10 (marker (ACC)₆G) to 23 (marker (AGC)₆G). The following monomorphic amplicons were determined for the studied local stock of rainbow trout: according to marker (CTC)₆C – 770 and 520 bp bands, for the marker (GAG)₆C – 345, 295 and 260 bp, and for the marker (AGC)₆C – 350 bp. The average number of polymorphic bands per locus was 15.8. The selected ISSR primers had a level of polymorphic information content above the average. The most effective markers for molecular-genetic analysis of rainbow trout were (AGC)₆G and (AGC)₆C according to the percentage of polymorphic bands, marker index, effective multiplex ratio and resolving power. The selected ISSR loci allow the genetic structure of the studied local stock to be characterized using the total and the effective number of alleles per locus (Na and Ne were 1.9 and 1.4, respectively), the Shannon index (average value I was 0.4) and the unbiased expected heterozygosity (mean uHe = 0.3). Microsatellite-based analysis showed features of the genetic structure of the local stock of rainbow trout at six microsatellite loci (OMM 1032, OMM 1077, OMM 1088, Str 15, Str 60, Str 73). Allelic diversity was established and alleles with the highest frequency and most typical for the given stock were identified. The Shannon index and unbiased expected heterozygosity were determined using SSR-markers and were 1.42 and 0.79, respectively. This depicts the complexity of the population structure, a high level of genetic diversity and indicates a high level of heterozygosity of local stock. The “gene pool profile” established as a result of ISSR-PCR in the future will help to differentiate local stocks of rainbow trout in aquaculture of Ukraine. Microsatellite markers provide the ability to determine individual features of genetic variation of local populations and to conduct the management of genetic resources on fish farms.
Collapse
|
6
|
The Impacts of Dam Construction and Removal on the Genetics of Recovering Steelhead ( Oncorhynchus mykiss) Populations across the Elwha River Watershed. Genes (Basel) 2021; 12:genes12010089. [PMID: 33450806 PMCID: PMC7828262 DOI: 10.3390/genes12010089] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 11/25/2022] Open
Abstract
Dam construction and longitudinal river habitat fragmentation disrupt important life histories and movement of aquatic species. This is especially true for Oncorhynchus mykiss that exhibits both migratory (steelhead) and non-migratory (resident rainbow) forms. While the negative effects of dams on salmonids have been extensively documented, few studies have had the opportunity to compare population genetic diversity and structure prior to and following dam removal. Here we examine the impacts of the removal of two dams on the Elwha River on the population genetics of O. mykiss. Genetic data were produced from >1200 samples collected prior to dam removal from both life history forms, and post-dam removal from steelhead. We identified three genetic clusters prior to dam removal primarily explained by isolation due to dams and natural barriers. Following dam removal, genetic structure decreased and admixture increased. Despite large O. mykiss population declines after dam construction, we did not detect shifts in population genetic diversity or allele frequencies of loci putatively involved in migratory phenotypic variation. Steelhead descendants from formerly below and above dammed populations recolonized the river rapidly after dam removal, suggesting that dam construction did not significantly reduce genetic diversity underlying O. mykiss life history strategies. These results have significant evolutionary implications for the conservation of migratory adaptive potential in O. mykiss populations above current anthropogenic barriers.
Collapse
|
7
|
Kannry SH, O'Rourke SM, Kelson SJ, Miller MR. On the Ecology and Distribution of Steelhead (Oncorhynchus mykiss) in California's Eel River. J Hered 2020; 111:548-563. [PMID: 33125465 DOI: 10.1093/jhered/esaa043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 10/28/2020] [Indexed: 11/12/2022] Open
Abstract
The preservation of life history and other phenotypic complexity is central to the resilience of Pacific salmon stocks. Steelhead (Oncorhynchus mykiss) express a diversity of life-history strategies such as the propensity to migrate (anadromy/residency) and the timing and state of maturation upon return to freshwater (run-timing), providing an opportunity to study adaptive phenotypic complexity. Historically, the Eel River supported upwards of 1 million salmon and steelhead, but the past century has seen dramatic declines of all salmonids in the watershed. Here we investigate life-history variation in Eel River steelhead by using Rapture sequencing, on thousands of individuals, to genotype the region diagnostic for run-timing (GREB1L) and the region strongly associated with residency/anadromy (OMY5) in the Eel River and other locations, as well as determine patterns of overall genetic differentiation. Our results provide insight into many conservation-related issues. For example, we found that distinct segregation between winter and summer-run steelhead correlated with flow-dependent barriers in major forks of the Eel, that summer-run steelhead inhabited the upper Eel prior to construction of an impassable dam, and that both life history and overall genetic diversity have been maintained in the resident trout population above; and we found no evidence of the summer-run allele in the South Fork Eel, indicating that summer run-timing cannot be expected to arise from standing genetic variation in this and other populations that lack the summer-run phenotype. The results presented in this study provide valuable information for designing future restoration and management strategies for O. mykiss in Northern California and beyond.
Collapse
|
8
|
Larson WA, Dann TH, Limborg MT, McKinney GJ, Seeb JE, Seeb LW. Parallel signatures of selection at genomic islands of divergence and the major histocompatibility complex in ecotypes of sockeye salmon across Alaska. Mol Ecol 2019; 28:2254-2271. [DOI: 10.1111/mec.15082] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 12/31/2022]
Affiliation(s)
- Wesley A. Larson
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Tyler H. Dann
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
- Gene Conservation Laboratory Alaska Department of Fish and Game Anchorage Alaska
| | - Morten T. Limborg
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Garrett J. McKinney
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - James E. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| | - Lisa W. Seeb
- School of Aquatic and Fishery Sciences University of Washington Seattle Washington
| |
Collapse
|
9
|
Pavlov SD, Semenova AV, Melnikova MN. Differentiation of the Kamchatka Rainbow Trout Parasalmo (Oncorhynchus) mykiss Populations by Microsatellite DNA Loci. BIOL BULL+ 2019. [DOI: 10.1134/s1062359019020122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Anadromy Redux? Genetic Analysis to Inform Development of an Indigenous American River Steelhead Broodstock. JOURNAL OF FISH AND WILDLIFE MANAGEMENT 2019. [DOI: 10.3996/072018-jfwm-063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Abstract
The construction of dams and water diversions has severely limited access to spawning habitat for anadromous fishes. To mitigate for these impacts, hatchery programs rear and release millions of juvenile salmonids, including steelhead, the anadromous ecotype of the species Oncorhynchus mykiss. These programs sometimes use nonindigenous broodstock sources that may have negative effects on wild populations. In California, however, only one anadromous fish hatchery program currently uses nonnative broodstock: the steelhead program at Nimbus Fish Hatchery on the American River, a tributary of the Sacramento River in the California Central Valley. The goal of this study was to determine if potentially appropriate sources to replace the broodstock for the Nimbus Hatchery steelhead program exist in the Upper American River, above Nimbus and Folsom dams. We show that all Upper American River O. mykiss sampled share ancestry with other populations in the Central Valley steelhead distinct population segment, with limited introgression from out-of-basin sources in some areas. Furthermore, some Upper American River populations retain adaptive genomic variation associated with a migratory life history, supporting the hypothesis that these populations display adfluvial migratory behavior. Together, these results provide insights into the evolution of trout populations above barrier dams. We conclude that some Upper American River O. mykiss populations represent genetically appropriate sources from which fisheries managers could potentially develop a new broodstock for the Nimbus Hatchery steelhead program to reestablish a native anadromous population in the Lower American River and contribute to recovery of the threatened Central Valley steelhead distinct population segment.
Collapse
|
11
|
Willoughby JR, Harder AM, Tennessen JA, Scribner KT, Christie MR. Rapid genetic adaptation to a novel environment despite a genome-wide reduction in genetic diversity. Mol Ecol 2018; 27:4041-4051. [PMID: 29802799 DOI: 10.1111/mec.14726] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Janna R. Willoughby
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana
| | - Avril M. Harder
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
| | - Jacob A. Tennessen
- Department of Integrative Biology; Oregon State University; Corvallis Oregon
| | - Kim T. Scribner
- Department of Fisheries and Wildlife; Michigan State University; East Lansing Michigan
- Department of Integrative Biology; Michigan State University; East Lansing Michigan
| | - Mark R. Christie
- Department of Biological Sciences; Purdue University; West Lafayette Indiana
- Department of Forestry and Natural Resources; Purdue University; West Lafayette Indiana
| |
Collapse
|
12
|
Richmond JQ, Backlin AR, Galst-Cavalcante C, O'Brien JW, Fisher RN. Loss of dendritic connectivity in southern California's urban riverscape facilitates decline of an endemic freshwater fish. Mol Ecol 2017; 27:369-386. [PMID: 29193550 DOI: 10.1111/mec.14445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/28/2017] [Accepted: 10/16/2017] [Indexed: 11/30/2022]
Abstract
Life history adaptations and spatial configuration of metapopulation networks allow certain species to persist in extreme fluctuating environments, yet long-term stability within these systems relies on the maintenance of linkage habitat. Degradation of such linkages in urban riverscapes can disrupt this dynamic in aquatic species, leading to increased extinction debt in local populations experiencing environment-related demographic flux. We used microsatellites and mtDNA to examine the effects of collapsed network structure in the endemic Santa Ana sucker Catostomus santaanae of southern California, a threatened species affected by natural flood-drought cycles, "boom-and-bust" demography, hybridization and presumed artificial transplantation. Our results show a predominance of drift-mediated processes in shaping population structure and that reverse mechanisms for counterbalancing the genetic effects of these phenomena have dissipated with the collapse of dendritic connectivity. We use approximate Bayesian models to support two cases of artificial transplantation and provide evidence that one of the invaded systems better represents the historic processes that maintained genetic variation within watersheds than any remaining drainages where C. santaanae is considered native. We further show that a stable dry gap in the northern range is preventing genetic dilution of pure C. santaanae persisting upstream of a hybrid assemblage involving a non-native sucker and that local accumulation of genetic variation in the same drainage is influenced by position within the network. This work has important implications for declining species that have historically relied on dendritic metapopulation networks to maintain source-sink dynamics in phasic environments, but no longer possess this capacity in urban-converted landscapes.
Collapse
Affiliation(s)
- Jonathan Q Richmond
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | - Adam R Backlin
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| | | | - John W O'Brien
- California Department of Fish and Wildlife, Los Alamitos, CA, USA
| | - Robert N Fisher
- U.S. Geological Survey, Western Ecological Research Center, San Diego, CA, USA
| |
Collapse
|
13
|
Apgar TM, Pearse DE, Palkovacs EP. Evolutionary restoration potential evaluated through the use of a trait-linked genetic marker. Evol Appl 2017; 10:485-497. [PMID: 28515781 PMCID: PMC5427673 DOI: 10.1111/eva.12471] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 02/12/2017] [Indexed: 12/31/2022] Open
Abstract
Human‐driven evolution can impact the ecological role and conservation value of impacted populations. Most evolutionary restoration approaches focus on manipulating gene flow, but an alternative approach is to manipulate the selection regime to restore historical or desired trait values. Here we examined the potential utility of this approach to restore anadromous migratory behavior in coastal California steelhead trout (Oncorhynchus mykiss) populations. We evaluated the effects of natural and anthropogenic environmental variables on the observed frequency of alleles at a genomic marker tightly associated with migratory behavior across 39 steelhead populations from across California, USA. We then modeled the potential for evolutionary restoration at sites that have been impacted by anthropogenic barriers. We found that complete barriers such as dams are associated with major reductions in the frequency of anadromy‐associated alleles. The removal of dams is therefore expected to restore anadromy significantly. Interestingly, accumulations of large numbers of partial barriers (passable under at least some flow conditions) were also associated with significant reductions in migratory allele frequencies. Restoration involving the removal of partial barriers could be evaluated alongside dam removal and fishway construction as a cost‐effective tool to restore anadromous fish migrations. Results encourage broader consideration of in situ evolution during the development of habitat restoration projects.
Collapse
Affiliation(s)
- Travis M Apgar
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| | - Devon E Pearse
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA.,Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Eric P Palkovacs
- Department of Ecology and Evolutionary Biology University of California Santa Cruz CA USA
| |
Collapse
|
14
|
Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. JOURNAL OF FISH BIOLOGY 2016; 89:2697-2716. [PMID: 27723095 DOI: 10.1111/jfb.13168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago.
Collapse
Affiliation(s)
- D E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA, 95060, U.S.A
| |
Collapse
|
15
|
Leitwein M, Garza JC, Pearse DE. Ancestry and adaptive evolution of anadromous, resident, and adfluvial rainbow trout ( Oncorhynchus mykiss) in the San Francisco bay area: application of adaptive genomic variation to conservation in a highly impacted landscape. Evol Appl 2016; 10:56-67. [PMID: 28035235 PMCID: PMC5192794 DOI: 10.1111/eva.12416] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/10/2016] [Indexed: 01/01/2023] Open
Abstract
The streams draining of into San Francisco Bay, California, have been impacted by habitat alteration for over 150 years, and roads, dams, water diversions, and other impediments now block the paths of many aquatic migratory species. These changes can affect the genetic structure of fish populations, as well as driving adaptive evolution to novel environmental conditions. Here, we determine the evolutionary relationships of San Francisco Bay Area steelhead/rainbow trout (Oncorhynchus mykiss) populations and show that (i) they are more closely related to native coastal steelhead than to the California Central Valley lineage, with no evidence of introgression by domesticated hatchery rainbow trout, (ii) populations above and below barriers within watersheds are each other's closest relatives, and (iii) adaptive genomic variation associated with migratory life-history traits in O. mykiss shows substantial evolutionary differences between fish above and below dams. These findings support continued habitat restoration and protection of San Francisco Bay Area O. mykiss populations and demonstrate that ecological conditions in novel habitats above barriers to anadromy influence life-history evolution. We highlight the importance of considering the adaptive landscape in conservation and restoration programs for species living in highly modified habitats, particularly with respect to key life-history traits.
Collapse
Affiliation(s)
- Maeva Leitwein
- Technopôle Brest-Iroiserue Dumont d'Urville Institut Universitaire Européen de la Mer (IUEM) University of Brest Plouzané France; Institute of Marine Sciences University of California Santa Cruz CA USA; Present address: Institut des Sciences de l'Evolution de Montpellier (ISEM) UMR 5554 Université de ´Montpellier Montpellier Cedex 5 France
| | - John Carlos Garza
- Institute of Marine Sciences University of California Santa Cruz CA USA; Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| | - Devon E Pearse
- Institute of Marine Sciences University of California Santa Cruz CA USA; Fisheries Ecology Division Southwest Fisheries Science Center National Marine Fisheries Service Santa Cruz CA USA
| |
Collapse
|