1
|
Sartori RQ, Lopes AG, Aires LPN, Bianchi RDC, de Mattos CCB, Morales AC, Castiglioni L. Identifying Priority Giant Anteater ( Myrmecophaga tridactyla) Populations for Conservation in São Paulo State, Brazil. Ecol Evol 2021; 11:700-713. [PMID: 33520159 PMCID: PMC7820152 DOI: 10.1002/ece3.6809] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 08/19/2020] [Accepted: 08/28/2020] [Indexed: 11/11/2022] Open
Abstract
Habitat loss is the main threat to biodiversity conservation worldwide. Some species may be particularly susceptible to the effects of fragmentation and the isolation of populations. The impacts of human activity on wild animal populations may be understood through relationships between individual genetic data and spatial landscape variables, particularly when considering local population dynamics influenced by fragmented habitats. Thus, the objective of this study was to analyze the population structure and genetic diversity of the giant anteater (Myrmecophaga tridactyla) using an individual sampling scheme (ISS) on a regional geographic scale. Data were collected from 41 specimens from twenty different locations in São Paulo State, Brazil, and six polymorphic microsatellite loci were genotyped. Our results indicate that barriers to gene flow exist and have segregated individuals of the farther away areas into two spatially structured clusters. The populations were also found to have high genetic diversity. The experimental sampling approach used herein enabled an analysis of the population dynamics of the giant anteater on a regional scale, as well as the identification of priority populations for genetic resource conservation for this species. The results reflect the need for adequate management plans. The efficacy of the sampling scheme may vary based on the study model used, but we argue that the use of an ISS combined with suitable molecular markers and statistical methods may serve as an important tool for initial analyses of threatened or vulnerable species, particularly in anthropized regions where populations are small or hard to characterize.
Collapse
Affiliation(s)
- Ricardo Quiterio Sartori
- School of Biosciences, Humanities, and Exact SciencesGraduate Program in BiosciencesSão Paulo State University (UNESP)São José do Rio PretoSão Paulo StateBrazil
| | - Alessandro Garcia Lopes
- School of Biosciences, Humanities, and Exact SciencesGraduate Program in BiosciencesSão Paulo State University (UNESP)São José do Rio PretoSão Paulo StateBrazil
| | | | - Rita de Cassia Bianchi
- School of Agricultural and Veterinary ScienceSão Paulo State University (UNESP)JaboticabalSão Paulo StateBrazil
| | | | - Adriana Coletto Morales
- School of Agricultural and Veterinary ScienceSão Paulo State University (UNESP)JaboticabalSão Paulo StateBrazil
| | - Lilian Castiglioni
- School of Biosciences, Humanities, and Exact SciencesGraduate Program in BiosciencesSão Paulo State University (UNESP)São José do Rio PretoSão Paulo StateBrazil
- São José do Rio Preto Medical School (FAMERP)São José do Rio PretoSão Paulo StateBrazil
- Rio Preto University Center (UNIRP)São José do Rio PretoSão Paulo StateBrazil
| |
Collapse
|
2
|
Sylvester EVA, Beiko RG, Bentzen P, Paterson I, Horne JB, Watson B, Lehnert S, Duffy S, Clément M, Robertson MJ, Bradbury IR. Environmental extremes drive population structure at the northern range limit of Atlantic salmon in North America. Mol Ecol 2018; 27:4026-4040. [PMID: 30152128 DOI: 10.1111/mec.14849] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 08/16/2018] [Accepted: 08/22/2018] [Indexed: 12/18/2022]
Abstract
Conservation of exploited species requires an understanding of both genetic diversity and the dominant structuring forces, particularly near range limits, where climatic variation can drive rapid expansions or contractions of geographic range. Here, we examine population structure and landscape associations in Atlantic salmon (Salmo salar) across a heterogeneous landscape near the northern range limit in Labrador, Canada. Analysis of two amplicon-based data sets containing 101 microsatellites and 376 single nucleotide polymorphisms (SNPs) from 35 locations revealed clear differentiation between populations spawning in rivers flowing into a large marine embayment (Lake Melville) compared to coastal populations. The mechanisms influencing the differentiation of embayment populations were investigated using both multivariate and machine-learning landscape genetic approaches. We identified temperature as the strongest correlate with genetic structure, particularly warm temperature extremes and wider annual temperature ranges. The genomic basis of this divergence was further explored using a subset of locations (n = 17) and a 220K SNP array. SNPs associated with spatial structuring and temperature mapped to a diverse set of genes and molecular pathways, including regulation of gene expression, immune response, and cell development and differentiation. The results spanning molecular marker types and both novel and established methods clearly show climate-associated, fine-scale population structure across an environmental gradient in Atlantic salmon near its range limit in North America, highlighting valuable approaches for predicting population responses to climate change and managing species sustainability.
Collapse
Affiliation(s)
- Emma V A Sylvester
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Robert G Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Paul Bentzen
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Ian Paterson
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - John B Horne
- University of Southern Mississippi Gulf Coast Research Laboratory, Ocean Springs, MS, Canada
| | - Beth Watson
- Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| | - Sarah Lehnert
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Steven Duffy
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St. John's, NL, Canada.,Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Martha J Robertson
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada
| | - Ian R Bradbury
- Science Branch, Department of Fisheries and Oceans Canada, St. John's, NL, Canada.,Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.,Marine Gene Probe Laboratory, Department of Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|