1
|
Puszko AK, Batista FA, Ejjoummany A, Bouillon A, Maurel M, Adler P, Legru A, Martinez M, Ortega Varga L, Hadjadj M, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Towards Improved Peptidic α-Ketoamide Inhibitors of the Plasmodial Subtilisin-Like SUB1: Exploration of N-Terminal Extensions and Cyclic Constraints. ChemMedChem 2025; 20:e202400924. [PMID: 39832214 DOI: 10.1002/cmdc.202400924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/17/2025] [Accepted: 01/17/2025] [Indexed: 01/22/2025]
Abstract
After more than 15 years of decline, the Malaria epidemy has increased again since 2017, reinforcing the need to identify drug candidates active on new targets involved in at least two biological stages of the Plasmodium life cycle. The SUB1 protease, which is essential for parasite egress in both hepatic and blood stages, would meet these criteria. We previously reported the structure-activity relationship analysis of α-ketoamide-containing inhibitors encompassing positions P4-P2'. Despite compounds with high inhibitory potencies were identified, their antiparasitic activity remained limited, probably due to insufficient cell permeability. Here, we present our efforts to improve it through the N-terminal introduction of basic or hydrophobic moieties and/or cyclization. Compared to our previous reference compounds 1/2 (Ac-Ile/Cpg-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we identified analogues with improved Pf-/PvSUB1 inhibition (IC50 values in the 10-20 nM range) and parasite growth inhibition (up to 98 % at 100 μM). The increase in potency was mainly observed when increasing the overall hydrophobicity of the compounds. Conjugation to the cell penetrating peptide octa-arginine was also favorable. Finally, the crystal structure of PvSUB1 in complex with compound 15 has been determined at 1.6 Å resolution. Compared to compound 1, this structure extended to the P5 residue and revealed two additional hydrogen bonds.
Collapse
Affiliation(s)
- Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| |
Collapse
|
2
|
Withers-Martinez C, Lidumniece E, Hackett F, Collins CR, Taha Z, Blackman MJ, Jirgensons A. Peptidic Boronic Acid Plasmodium falciparum SUB1 Inhibitors with Improved Selectivity over Human Proteasome. J Med Chem 2024; 67:13033-13055. [PMID: 39051854 PMCID: PMC7616463 DOI: 10.1021/acs.jmedchem.4c01005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Plasmodium falciparum subtilisin-like serine protease 1 (PfSUB1) is essential for egress of invasive merozoite forms of the parasite, rendering PfSUB1 an attractive antimalarial target. Here, we report studies aimed to improve drug-like properties of peptidic boronic acid PfSUB1 inhibitors including increased lipophilicity and selectivity over human proteasome (H20S). Structure-activity relationship investigations revealed that lipophilic P3 amino acid side chains as well as N-capping groups were well tolerated in retaining PfSUB1 inhibitory potency. At the P1 position, replacing the methyl group with a carboxyethyl substituent led to boralactone PfSUB1 inhibitors with remarkably improved selectivity over H20S. Combining lipophilic end-capping groups with the boralactone reduced the selectivity over H20S. However, compound 4c still showed >60-fold selectivity versus H20S and low nanomolar PfSUB1 inhibitory potency. Importantly, this compound inhibited the growth of a genetically modified P. falciparum line expressing reduced levels of PfSUB1 13-fold more efficiently compared to a wild-type parasite line.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Christine R. Collins
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Zahie Taha
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
| | - Michael J. Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, LondonNW1 1AT, United Kingdom
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, LondonWC1E 7HT, United Kingdom
| | | |
Collapse
|
3
|
Legru A, Batista FA, Puszko AK, Bouillon A, Maurel M, Martinez M, Ejjoummany A, Ortega Varga L, Adler P, Méchaly A, Hadjadj M, Sosnowski P, Hopfgartner G, Alzari PM, Blondel A, Haouz A, Barale JC, Hernandez JF. Insights from structure-activity relationships and the binding mode of peptidic α-ketoamide inhibitors of the malaria drug target subtilisin-like SUB1. Eur J Med Chem 2024; 269:116308. [PMID: 38503166 DOI: 10.1016/j.ejmech.2024.116308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/04/2024] [Indexed: 03/21/2024]
Abstract
Plasmodium multi-resistance, including against artemisinin, seriously threatens malaria treatment and control. Hence, new drugs are urgently needed, ideally targeting different parasitic stages, which are not yet targeted by current drugs. The SUB1 protease is involved in both hepatic and blood stages due to its essential role in the egress of parasites from host cells, and, as potential new target, it would meet the above criteria. We report here the synthesis as well as the biological and structural evaluation of substrate-based α-ketoamide SUB1 pseudopeptidic inhibitors encompassing positions P4-P2'. By individually substituting each position of the reference compound 1 (MAM-117, Ac-Ile-Thr-Ala-AlaCO-Asp-Glu (Oall)-NH2), we better characterized the structural determinants for SUB1 binding. We first identified compound 8 with IC50 values of 50 and 570 nM against Pv- and PfSUB1, respectively (about 3.5-fold higher potency compared to 1). Compound 8 inhibited P. falciparum merozoite egress in culture by 37% at 100 μM. By increasing the overall hydrophobicity of the compounds, we could improve the PfSUB1 inhibition level and antiparasitic activity, as shown with compound 40 (IC50 values of 12 and 10 nM against Pv- and PfSUB1, respectively, IC50 value of 23 μM on P. falciparum merozoite egress). We also found that 8 was highly selective towards SUB1 over three mammalian serine peptidases, supporting the promising value of this compound. Finally, several crystal 3D-structures of SUB1-inhibitor complexes, including with 8, were solved at high resolution to decipher the binding mode of these compounds.
Collapse
Affiliation(s)
- Alice Legru
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Fernando A Batista
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Anna K Puszko
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Anthony Bouillon
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Manon Maurel
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Mariano Martinez
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Abdelaziz Ejjoummany
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Laura Ortega Varga
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Pauline Adler
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Ariel Méchaly
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Margot Hadjadj
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France
| | - Piotr Sosnowski
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Gérard Hopfgartner
- Department of Inorganic and Analytical Chemistry, University of Geneva, CH-1211, Geneva, Switzerland
| | - Pedro M Alzari
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Arnaud Blondel
- Structural Bioinformatic, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Ahmed Haouz
- Cristallography Platform-C2RT, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France
| | - Jean-Christophe Barale
- Structural Microbiology, UMR3528, Institut Pasteur, CNRS, Université de Paris, Paris, France.
| | - Jean-François Hernandez
- Institut des Biomolécules Max Mousseron (IBMM), CNRS, Univ Montpellier, ENSCM, Montpellier, France.
| |
Collapse
|
4
|
Lidumniece E, Withers-Martinez C, Hackett F, Blackman MJ, Jirgensons A. Subtilisin-like Serine Protease 1 (SUB1) as an Emerging Antimalarial Drug Target: Current Achievements in Inhibitor Discovery. J Med Chem 2022; 65:12535-12545. [PMID: 36137276 DOI: 10.1021/acs.jmedchem.2c01093] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Widespread resistance to many antimalarial therapies currently in use stresses the need for the discovery of new classes of drugs with new modes of action. The subtilisin-like serine protease SUB1 controls egress of malaria parasites (merozoites) from the parasite-infected red blood cell. As such, SUB1 is considered a prospective target for drugs designed to interrupt the asexual blood stage life cycle of the malaria parasite. Inhibitors of SUB1 have potential as wide-spectrum antimalarial drugs, as a single orthologue of SUB1 is found in the genomes of all known Plasmodium species. This mini-perspective provides a short overview of the function and structure of SUB1 and summarizes all of the published SUB1 inhibitors. The inhibitors are classified by the methods of their discovery, including both rational design and screening.
Collapse
Affiliation(s)
| | | | - Fiona Hackett
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Michael J Blackman
- Malaria Biochemistry Laboratory, The Francis Crick Institute, London NW1 1AT, United Kingdom.,Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1E 7HT, United Kingdom
| | | |
Collapse
|
5
|
Padalino G, El-Sakkary N, Liu LJ, Liu C, Harte DSG, Barnes RE, Sayers E, Forde-Thomas J, Whiteland H, Bassetto M, Ferla S, Johnson G, Jones AT, Caffrey CR, Chalmers I, Brancale A, Hoffmann KF. Anti-schistosomal activities of quinoxaline-containing compounds: From hit identification to lead optimisation. Eur J Med Chem 2021; 226:113823. [PMID: 34536671 PMCID: PMC8626775 DOI: 10.1016/j.ejmech.2021.113823] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/13/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022]
Abstract
Schistosomiasis is a neglected disease of poverty that is caused by infection with blood fluke species contained within the genus Schistosoma. For the last 40 years, control of schistosomiasis in endemic regions has predominantly been facilitated by administration of a single drug, praziquantel. Due to limitations in this mono-chemotherapeutic approach for sustaining schistosomiasis control into the future, alternative anti-schistosomal compounds are increasingly being sought by the drug discovery community. Herein, we describe a multi-pronged, integrated strategy that led to the identification and further exploration of the quinoxaline core as a promising anti-schistosomal scaffold. Firstly, phenotypic screening of commercially available small molecules resulted in the identification of a moderately active hit compound against Schistosoma mansoni (1, EC50 = 4.59 μM on schistosomula). Secondary exploration of the chemical space around compound 1 led to the identification of a quinoxaline-core containing, non-genotoxic lead (compound 22). Compound 22 demonstrated substantially improved activities on both intra-mammalian (EC50 = 0.44 μM, 0.20 μM and 84.7 nM, on schistosomula, juvenile and adult worms, respectively) and intra-molluscan (sporocyst) S. mansoni lifecycle stages. Further medicinal chemistry optimisation of compound 22, resulting in the generation of 20 additional analogues, improved our understanding of the structure-activity relationship and resulted in considerable improvements in both anti-schistosome potency and selectivity (e.g. compound 30; EC50 = 2.59 nM on adult worms; selectivity index compared to the HepG2 cell line = 348). Some derivatives of compound 22 (e.g. 31 and 33) also demonstrated significant activity against the two other medically important species, Schistosoma haematobium and Schistosoma japonicum. Further optimisation of this class of anti-schistosomal is ongoing and could lead to the development of an urgently needed alternative to praziquantel for assisting in schistosomiasis elimination strategies. Lead compound 22 was identified with EC50 of 0.44 µM and 84.7 nM for schistosomula and adult worms. 20 analogues of the lead compound 22 were synthesised. Compounds 25, 30 and 32 showed the best selectivity profile. Compounds 31 and 33 are the most active on three medically important schistosome species.
Collapse
Affiliation(s)
- Gilda Padalino
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Nelly El-Sakkary
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Lawrence J Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Chenxi Liu
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Danielle S G Harte
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Rachel E Barnes
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Edward Sayers
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Josephine Forde-Thomas
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Helen Whiteland
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Marcella Bassetto
- Department of Chemistry, College of Science and Engineering, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Salvatore Ferla
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - George Johnson
- Swansea University Medical School, Swansea University, Swansea, SA2 8PP, United Kingdom
| | - Arwyn T Jones
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases (CDIPD), Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Iain Chalmers
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom
| | - Andrea Brancale
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, United Kingdom
| | - Karl F Hoffmann
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, SY23 3DA, United Kingdom.
| |
Collapse
|
6
|
Screening the Medicines for Malaria Venture Pathogen Box across Multiple Pathogens Reclassifies Starting Points for Open-Source Drug Discovery. Antimicrob Agents Chemother 2017; 61:AAC.00379-17. [PMID: 28674055 PMCID: PMC5571359 DOI: 10.1128/aac.00379-17] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 06/19/2017] [Indexed: 01/19/2023] Open
Abstract
Open-access drug discovery provides a substantial resource for diseases primarily affecting the poor and disadvantaged. The open-access Pathogen Box collection is comprised of compounds with demonstrated biological activity against specific pathogenic organisms. The supply of this resource by the Medicines for Malaria Venture has the potential to provide new chemical starting points for a number of tropical and neglected diseases, through repurposing of these compounds for use in drug discovery campaigns for these additional pathogens. We tested the Pathogen Box against kinetoplastid parasites and malaria life cycle stages in vitro Consequently, chemical starting points for malaria, human African trypanosomiasis, Chagas disease, and leishmaniasis drug discovery efforts have been identified. Inclusive of this in vitro biological evaluation, outcomes from extensive literature reviews and database searches are provided. This information encompasses commercial availability, literature reference citations, other aliases and ChEMBL number with associated biological activity, where available. The release of this new data for the Pathogen Box collection into the public domain will aid the open-source model of drug discovery. Importantly, this will provide novel chemical starting points for drug discovery and target identification in tropical disease research.
Collapse
|
7
|
Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathog 2016; 12:e1005763. [PMID: 27467575 PMCID: PMC4965013 DOI: 10.1371/journal.ppat.1005763] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 06/21/2016] [Indexed: 01/22/2023] Open
Abstract
A major cause of the paucity of new starting points for drug discovery is the lack of interaction between academia and industry. Much of the global resource in biology is present in universities, whereas the focus of medicinal chemistry is still largely within industry. Open source drug discovery, with sharing of information, is clearly a first step towards overcoming this gap. But the interface could especially be bridged through a scale-up of open sharing of physical compounds, which would accelerate the finding of new starting points for drug discovery. The Medicines for Malaria Venture Malaria Box is a collection of over 400 compounds representing families of structures identified in phenotypic screens of pharmaceutical and academic libraries against the Plasmodium falciparum malaria parasite. The set has now been distributed to almost 200 research groups globally in the last two years, with the only stipulation that information from the screens is deposited in the public domain. This paper reports for the first time on 236 screens that have been carried out against the Malaria Box and compares these results with 55 assays that were previously published, in a format that allows a meta-analysis of the combined dataset. The combined biochemical and cellular assays presented here suggest mechanisms of action for 135 (34%) of the compounds active in killing multiple life-cycle stages of the malaria parasite, including asexual blood, liver, gametocyte, gametes and insect ookinete stages. In addition, many compounds demonstrated activity against other pathogens, showing hits in assays with 16 protozoa, 7 helminths, 9 bacterial and mycobacterial species, the dengue fever mosquito vector, and the NCI60 human cancer cell line panel of 60 human tumor cell lines. Toxicological, pharmacokinetic and metabolic properties were collected on all the compounds, assisting in the selection of the most promising candidates for murine proof-of-concept experiments and medicinal chemistry programs. The data for all of these assays are presented and analyzed to show how outstanding leads for many indications can be selected. These results reveal the immense potential for translating the dispersed expertise in biological assays involving human pathogens into drug discovery starting points, by providing open access to new families of molecules, and emphasize how a small additional investment made to help acquire and distribute compounds, and sharing the data, can catalyze drug discovery for dozens of different indications. Another lesson is that when multiple screens from different groups are run on the same library, results can be integrated quickly to select the most valuable starting points for subsequent medicinal chemistry efforts. Malaria leads to the loss of over 440,000 lives annually; accelerating research to discover new candidate drugs is a priority. Medicines for Malaria Venture (MMV) has distilled over 25,000 compounds that kill malaria parasites in vitro into a group of 400 representative compounds, called the "Malaria Box". These Malaria Box sets were distributed free-of-charge to research laboratories in 30 different countries that work on a wide variety of pathogens. Fifty-five groups compiled >290 assay results for this paper describing the many activities of the Malaria Box compounds. The collective results suggest a potential mechanism of action for over 130 compounds against malaria and illuminate the most promising compounds for further malaria drug development research. Excitingly some of these compounds also showed outstanding activity against other disease agents including fungi, bacteria, other single-cellular parasites, worms, and even human cancer cells. The results have ignited over 30 drug development programs for a variety of diseases. This open access effort was so successful that MMV has begun to distribute another set of compounds with initial activity against a wider range of infectious agents that are of public health concern, called the Pathogen Box, available now to scientific labs all over the world (www.PathogenBox.org).
Collapse
|
8
|
Pyrazine- and pyridine-substituted prop-2-yn-1-ols, but-3-yn-2-ols, and but-3-yn-2-ones – purification, stability, and handling revised. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1811-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|