1
|
Singh M, Malhotra L, Haque MA, Kumar M, Tikhomirov A, Litvinova V, Korolev AM, Ethayathulla AS, Das U, Shchekotikhin AE, Kaur P. Heteroarene-fused anthraquinone derivatives as potential modulators for human aurora kinase B. Biochimie 2021; 182:152-165. [PMID: 33417980 DOI: 10.1016/j.biochi.2020.12.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 12/10/2020] [Accepted: 12/29/2020] [Indexed: 01/30/2023]
Abstract
The quest for effective anticancer therapeutics continues to be extensively pursued. Over the past century, several drugs have been developed, however, a majority of these drugs have a poor therapeutic index and increased toxicity profile. Hence, there still exists ample opportunity to discover safe and effective anticancer drugs. Aurora Kinase B (AurB), a member of the Aurora kinase family and a key regulator of mitotic cell division, is found to be frequently overexpressed in a variety of human cancers and has thus emerged as an attractive target for the design of anticancer therapeutics. In the present study, a structure-based scaffold hopping approach was utilized to modify the heterocyclic moiety of (S)-3-(3-aminopyrrolidine-1-carbonyl)-4,11-dihydroxy-2-methylanthra [2,3-b]furan-5,10-dione (anthrafuran 1) to generate a series of heteroarene-fused anthraquinone derivatives, which were then subjected to virtual screening for the identification of potential AurB inhibitors. The obtained hits were subsequently synthesized and evaluated by using a combination of in silico and biophysical techniques for elucidating their in vitro binding and inhibition activity with recombinantly expressed AurB. Four identified hits presented an improved binding profile as compared to their parent analog anthrafuran 1. One derivative, anthrathiophene 2 demonstrated excellent in vitro inhibition of AurB (7.3 μM).
Collapse
Affiliation(s)
- Mandeep Singh
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Lakshay Malhotra
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Md Anzarul Haque
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Mukesh Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Alexander Tikhomirov
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Valeria Litvinova
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Alexander M Korolev
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - A S Ethayathulla
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Uddipan Das
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Andrey E Shchekotikhin
- Gause Institute of New Antibiotics, Moscow, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
2
|
Loska R, Mąkosza M. Introduction of Carbon Substituents into Nitroarenes via Nucleophilic Substitution of Hydrogen: New Developments. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nucleophilic substitution of hydrogen in nitroarenes has become a powerful synthetic tool for functionalization of these important organic substrates, complementary to other modern methods. In this review we present new developments in the area of introduction of alkyl and functionalized alkyl substituents into nitroarene rings via nucleophilic substitution of hydrogen, followed by application of these processes in the construction of carbo- and heterocyclic rings. Finally, new developments in the investigation of the mechanism of SNArH are summarized.1 Introduction2 Alkylation and Haloalkylation3 Functionalized Carbon Substituents4 Formation of Carbo- and Heterocyclic Rings5 Mechanistic Aspects of SNArH6 Conclusion
Collapse
|
5
|
Tikhomirov AS, Litvinova VA, Andreeva DV, Tsvetkov VB, Dezhenkova LG, Volodina YL, Kaluzhny DN, Treshalin ID, Schols D, Ramonova AA, Moisenovich MM, Shtil AA, Shchekotikhin AE. Amides of pyrrole- and thiophene-fused anthraquinone derivatives: A role of the heterocyclic core in antitumor properties. Eur J Med Chem 2020; 199:112294. [PMID: 32428792 DOI: 10.1016/j.ejmech.2020.112294] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/21/2022]
Abstract
Heteroarene-fused anthraquinone derivatives represent a class of perspective anticancer drug candidates capable of targeting multiple vital processes including drug resistance. Taking advantage of previously demonstrated potential of amide derivatives of heteroarene-fused anthraquinones, we herein dissected the role of the heterocyclic core in antitumor properties. A new series of naphtho[2,3-f]indole-3- and anthra[2,3-b]thiophene-3-carboxamides was synthesized via coupling the respective acids with cyclic diamines. New compounds demonstrated a submicromolar antiproliferative potency close to doxorubicin (Dox) against five tumor cell lines of various tissue origin. In contrast to Dox, the new compounds were similarly cytotoxic for HCT116 colon carcinoma cells (wild type p53) and their isogenic p53 knockout counterparts. Modification of the heterocyclic core changed the targeting properties: the best-in-series naphtho[2,3-f]indole-3-carboxamide 8 formed more affine complexes with DNA duplex than furan and thiophene analogs, a property that can be translated into a stronger inhibition of topoisomerase 1 mediated DNA unwinding. At tolerable doses the water soluble derivative 8 significantly inhibited tumor growth (up to 79%) and increased the lifespan (153%) of mice bearing P388 lymphoma transplants. Together with better solubility for parenteral administration and well tolerance by animals of the indole derivative 8 indicates prospects for further search of new antitumor drug candidates among the heteroarene-fused anthraquinones.
Collapse
Affiliation(s)
- Alexander S Tikhomirov
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Mendeleyev University of Chemical Technology, 9 Miusskaya Square, Moscow, 125047, Russian Federation
| | - Valeria A Litvinova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Daria V Andreeva
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Vladimir B Tsvetkov
- Computational Oncology Group, I.M. Sechenov First Moscow State Medical University, 8-2 Trubetskaya, 119991, Moscow, Russia; Research and Clinical Center for Physical Chemical Medicine, 1A M. Pirogovskaya Street, Moscow, 119435, Russia
| | - Lyubov G Dezhenkova
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Yulia L Volodina
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | - Dmitry N Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, Moscow, 119991, Russia
| | - Ivan D Treshalin
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia
| | - Dominique Schols
- Rega Institute for Medical Research, K.U. Leuven, 3000, Leuven, Belgium
| | - Alla A Ramonova
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Mikhail M Moisenovich
- Department of Biology, Moscow State University, 1 Leninskie Gory, Moscow, 119234, Russia
| | - Alexander A Shtil
- Gause Institute of New Antibiotics, 11 B. Pirogovskaya Street, Moscow, 119021, Russia; Blokhin National Medical Center of Oncology, 24 Kashirskoye Shosse, Moscow, 115478, Russia
| | | |
Collapse
|