1
|
Gangai S, Fernandes R, Mhaske K, Narayan R. Cu(ii)-catalyzed aerobic oxidative coupling of furans with indoles enables expeditious synthesis of indolyl-furans with blue fluorescence. RSC Adv 2024; 14:1239-1249. [PMID: 38174245 PMCID: PMC10762296 DOI: 10.1039/d3ra08226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 01/05/2024] Open
Abstract
With the purpose of incorporating sustainability in chemical processes, there has been a renewed focus on utilizing earth-abundant metal catalysts to expand the repertoire of organic reactions and processes. In this work, we have explored the atom-economic oxidative coupling between two important electron-rich heterocycles - indoles and furans - using commonly available, inexpensive metal catalyst CuCl2·2H2O (<0.25$ per g) to develop an expeditious synthesis of indolyl-furans. Moreover, the reaction proceeded well in the presence of the so-called 'ultimate oxidant' - air, without the need for any external ligand or additive. The reaction was found to be scalable and to work even under partially aqueous conditions. This makes the methodology highly economical, practical, operationally simple and sustainable. In addition, the methodology provides direct access to novel indole-furan-thiophene (IFT)-based electron-rich π-conjugated systems, which show green-yellow fluorescence with large Stokes shift and high quantum yields. Mechanistic investigations reveal that the reaction proceeds through chemoselective oxidation of indole by the metal catalyst followed by the nucleophilic attack by furan.
Collapse
Affiliation(s)
- Shon Gangai
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rushil Fernandes
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences, Indian Institute of Technology Goa, GEC Campus Farmagudi Goa-403401 India
- School of Interdisciplinary Life Sciences, Indian Institute of Technology Goa GEC Campus, Farmagudi Goa-403401 India
| |
Collapse
|
2
|
Mor S, Khatri M. Convenient synthesis of benzothiazinoisoindol-11-ones and benzoindenothiazin-11-ones, and antimicrobial testing thereof. Mol Divers 2022:10.1007/s11030-022-10483-9. [PMID: 35922654 DOI: 10.1007/s11030-022-10483-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/10/2022] [Indexed: 11/24/2022]
Abstract
Benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t and benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones 6a-e were synthesized conveniently via cyclocondensation of 2-bromo-2-(2/3-substitutedphenyl)-1H-indene-1,3(2H)-diones and 2-aminobenzenethiols in freshly dried ethanol with 70-85% yields. The synthesized derivatives were well characterized by employing different spectral techniques (FTIR, 1H & 13C NMR and HRMS) and X-ray crystallographic analysis. Further, all the reported compounds were tested for their antibacterial and antifungal activities using Ciprofloxacin and Fluconazole as standard drugs, respectively. The results of antimicrobial evaluation revealed that compounds 5o and 5t displayed remarkable inhibitory activity against B. subtilis, S. aureus, P. aeruginosa and A. niger with MIC values in the range of 0.0141-0.0283 µmol/mL, whereas 5j was found active against E. coli and C. albicans with MIC values of 0.0286 µmol/mL and 0.0143 µmol/mL, respectively. Additionally, among all the benzo[b]indeno[1,2-e][1,4]thiazin-11(10aH)-ones, 6c exhibited excellent inhibition against all the tested bacterial and fungal strains with MIC values ranging from 0.0143 to 0.1145 µmol/mL. Structure activity relationships were also established for all the tested benzo[5,6][1,4]thiazino[3,4-a]isoindol-11-ones 5a-t.
Collapse
Affiliation(s)
- Satbir Mor
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| | - Mohini Khatri
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| |
Collapse
|
3
|
Fernandes R, Mhaske K, Balhara R, Jindal G, Narayan R. Copper-Catalyzed Aerobic Cross-Dehydrogenative Coupling of β-Oxime Ether Furan with Indole. Chem Asian J 2022; 17:e202101369. [PMID: 35146932 DOI: 10.1002/asia.202101369] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/30/2022] [Indexed: 11/09/2022]
Abstract
Heterobiaryls serve as relevant structural motifs in many fields of high applicative importance such as drugs, agrochemicals, organic functional materials etc. Cross-dehydrogenative coupling involving direct oxidation of two C-H bonds to construct a C-C bond is actively being pursued as a more benign and 'greener' alternative for synthesizing heterobiaryls. Herein, we report a Cu(I)-catalyzed cross-dehydrogenative coupling of indoles and furans, two of the most important aromatic heterocycles using air as the terminal oxidant. The reaction proceeds with regio- and chemoselectivity to give the cross-coupled products in good to excellent yields generally. A broad substrate scope with respect to both the coupling partners has been demonstrated to prove the generality of this reaction. This represents the hitherto unexplored cross-dehydrogenative coupling methodology to obtain an indole-furan biaryl motif.
Collapse
Affiliation(s)
- Rushil Fernandes
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Krishna Mhaske
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| | - Reena Balhara
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Garima Jindal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India
| | - Rishikesh Narayan
- School of Chemical and Materials Sciences (SCMS), Indian Institute of Technology (IIT) Goa GEC Campus, Farmagudi, Ponda, Goa-403401, India
| |
Collapse
|
4
|
El‐Mekabaty A, Sofan MA, Hasel AM, Said SB. Concise Synthesis of Some New Benzothiazole‐Based Heterocycles as Probable Anticancer and Antioxidant Agents. ChemistrySelect 2021. [DOI: 10.1002/slct.202100372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Chemistry Department Faculty of Science Mansoura University El-Gomhoria Street ET-35516 Mansoura Egypt
| | - Mamdouh A. Sofan
- Chemistry Faculty of Science Damietta University New Damietta (Egypt) Chemistry Department Faculty of Science Damietta University New Damietta Egypt
| | - Ali M. Hasel
- Chemistry Faculty of Science Damietta University New Damietta (Egypt) Chemistry Department Faculty of Science Damietta University New Damietta Egypt
| | - Samy B. Said
- Chemistry Faculty of Science Damietta University New Damietta (Egypt) Chemistry Department Faculty of Science Damietta University New Damietta Egypt
| |
Collapse
|
5
|
Saliyeva LN, Diachenko IV, Vas’kevich RI, Slyvka NY, Vovk MV. Imidazothiazoles and their Hydrogenated Analogs: Methods of Synthesis and Biomedical Potential. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02827-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
6
|
Elattar KM, El‐Mekabaty A. Heterocyclic steroids: Synthetic routes and biological characteristics of steroidal fused bicyclic pyrimidines. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4174] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Khaled M. Elattar
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| | - Ahmed El‐Mekabaty
- Chemistry Department, Faculty of Science Mansoura University Mansoura Egypt
| |
Collapse
|
7
|
El-Mekabaty A, Etman HA, Mosbah A, Fadda AA. Reactivity of Barbituric, Thiobarbituric Acids and Their Related Analogues: Synthesis of Substituted and Heterocycles-based Pyrimidines. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999200608134859] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Barbituric, thiobarbituric acids and their related analogs are reactive synthons for
the synthesis of drugs and biologically, and pharmaceutically active pyrimidines. The present
review aimed to summarize the recent advances in the synthesis of different alkylsubstituted,
fused cycles, spiro-, and binary heterocycles incorporated pyrimidine skeleton
based on barbituric derivatives. In this sequence, the eco-friendly techniques under catalytic
conditions were used for the diverse types of multicomponent reactions under different
conditions for the synthesis of various types of heterocycles. Nano-catalysts are efficient for
the synthesis of these compounds in high yields and effective catalyst reusability. The compounds
are potent antibacterial, cytotoxic, xanthine oxidase inhibitory activities, and attend
as urease inhibitors. The projected mechanisms for the synthesis of pyranopyrimidines, benzochromenopyrimidines,
chromeno-pyranopyrimidines, spiroxyindoles, oxospiro-tricyclic furopyrimidines, pyrimidine-based monoand
bicyclic pyridines were discussed. The potent and diverse biological activities for instance, antioxidant,
antibacterial, cytotoxic, and xanthine oxidase inhibitory activities, as well as urease inhibitors, are specified.
Collapse
Affiliation(s)
- Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Hassan A. Etman
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed Mosbah
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| | - Ahmed A. Fadda
- Chemistry Department, Faculty of Science, Mansoura University, El-Gomhoria Street, ET-35516 Mansoura, Egypt
| |
Collapse
|
8
|
Salimova EV, Magafurova AA, Tretyakova EV, Kukovinets OS, Parfenova LV. Indole Derivatives of Fusidane Triterpenoids: Synthesis and the Antibacterial Activity. Chem Heterocycl Compd (N Y) 2020. [DOI: 10.1007/s10593-020-02733-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
El‐Mekabaty A, Etman HA, Mosbah A, Fadda AA. Synthesis and Biological Screening of Some Pyrimidinone‐Based Heterocycles from Enamines. ChemistrySelect 2020. [DOI: 10.1002/slct.202001760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Hassan A. Etman
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed Mosbah
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed A. Fadda
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| |
Collapse
|
10
|
El‐Mekabaty A, Fouda AES, Shaaban IEI. Convenient synthesis of functionalized thieno[2,3‐
d
]pyrimidine‐4‐ones and thieno[2,3‐
b
]pyridine‐4‐ones bearing a pyridine moiety with anticipated antioxidant activity. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Chemistry Department, Faculty of ScienceMansoura University Mansoura Egypt
| | | | | |
Collapse
|
11
|
El‐Mekabaty A, Etman HA, Mosbah A, Fadda AA. Synthesis, In Vitro Cytotoxicity and Bleomycin‐Dependent DNA Damage Evaluation of Some Heterocyclic‐Fused Pyrimidinone Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.202001006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Hassan A. Etman
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed Mosbah
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| | - Ahmed A. Fadda
- Department: ChemistryInstitution: Faculty of ScienceMansoura UniversityMansoura (Egypt)Address 1: Chemistry DepartmentFaculty of ScienceMansoura University El-Gomhoria Street ET 35516 Mansoura Egypt
| |
Collapse
|
12
|
Fedorchenko TG, Lipunova GN, Shchepochkin AV, Valova MS, Tsmokalyuk AN, Slepukhin PA, Chupakhin ON. Synthesis and Spectral, Electrochemical, and Antioxidant Properties of 2-(5-Aryl-6-R-3-phenyl-5,6-dihydro-4H-1,2,4,5-tetrazin-1-yl)-1,3-benzothiazoles. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428020010078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
El-Mekabaty A, E. Ibrahim M. Facile and Convenient Synthesis of New Isoxazolo[5,4-b]pyridine, Pyrrolo[3,2-d]isoxazole, Isoxazolo[5,4-b]azepine-4,7-dione and Isoxazole Derivatives with Potential Anticancer Activity. HETEROCYCLES 2020. [DOI: 10.3987/com-20-14245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
14
|
El‐Mekabaty A, Awad HM. Convenient synthesis of novel sulfonamide derivatives as promising anticancer agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3849] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ahmed El‐Mekabaty
- Department of Chemistry, Faculty of ScienceMansoura University Mansoura Egypt
| | - Hanem M. Awad
- Department of Tanning Materials and Leather TechnologyNational Research Centre Cairo Egypt
| |
Collapse
|
15
|
Monier M, El-Mekabaty A, Abdel-Latif D, Elattar KM. Chemistry of bicyclic 5-6 systems: Synthesis of oxazolo[3,2-a]pyridines and their salts with a ring-junction nitrogen atom. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1643889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mohamed Monier
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Ahmed El-Mekabaty
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Doaa Abdel-Latif
- Chemistry Department, Faculty of Science, Taibah University, Yanbu Al-Bahr, Kingdom of Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Khaled M. Elattar
- Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|