1
|
Sun Y, Li X, Wang Y, Shang X, Huang W, Ang S, Li D, Wong WL, Hong WD, Zhang K, Wu P. In vitro and in vivo evaluation of novel ursolic acid derivatives as potential antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA). Bioorg Chem 2025; 154:107986. [PMID: 39615282 DOI: 10.1016/j.bioorg.2024.107986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 01/15/2025]
Abstract
The misuse and abuse of antibiotics have led to the increase of drug resistance and the emergence of multi-drug resistant bacteria. Therefore, it is an urgent need to develop novel antimicrobial agents to address this problem. Natural products (NPs) could provide an effective strategy for the discovery of drug due to their wide range of source and biological activities. Ursolic acid (UA) is a naturally occurring compound known for its wide range of biological properties. In this study, a series of UA derivatives were rationally designed and synthesized by incorporating antibacterial potential fragments of benzenesulfonamide and indole, with the aim of obtaining novel UA derivatives for the treatment of bacterial infections. Based on the preliminary screening, UA derivatives 27 (yield of 26 %), containing 4-chlorobenzenesulfonamide and 6-carboxyindole pharmacophores, as well as 34 (yield of 42 %), containing 4-carboxybenzenesulfonamide and unsubstituted indole pharmacophores, were identified as promising antibacterial agents against Staphylococcus aureus, especially for methicillin-resistant Staphylococcus aureus (MRSA), possessing MICs of 1 μM. Furthermore, both of them also displayed low hemolytic activity, non-resistance, and low-toxicity to mammalian cells. In addition, further mechanistic studies revealed that 27 and 34 were able to inhibit and eliminate MRSA biofilm formation, affecting the permeability of bacterial cell membrane, leading to increase intracellular reactive oxygen species (ROS) and ultimately inducing bacterial death. Notably, 27 and 34 also showed promising in vivo efficacy against MRSA in a mouse wound model. These results suggested that 27 and 34 should have promising applications against MRSA infection.
Collapse
Affiliation(s)
- Ying Sun
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiaofang Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Yan Wang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Xiangcun Shang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wenhuan Huang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Song Ang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Dongli Li
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China
| | - Wing-Leung Wong
- The State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | | | - Kun Zhang
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| | - Panpan Wu
- School of Pharmacy and Food Engineering, Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, Wuyi University, Jiangmen 529020, PR China.
| |
Collapse
|
2
|
Jalmakhanbetova RI, Mukusheva GK, Abdugalimov AS, Zhumagalieva ZZ, Dehaen W, Anthonissen S, Suleimen YM, Seidakhmetova RB. Synthesis and Investigation of Biological Activity of New Betulonic Acid Derivatives Containing 1,2,3-Triazole Fragments. Molecules 2024; 29:3149. [PMID: 38999106 PMCID: PMC11243376 DOI: 10.3390/molecules29133149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
The results of this study showed that the compounds synthesized by the authors have significant potential due to their antibacterial and cytotoxic properties. The apparent antibacterial activity demonstrated by the compounds suggests that they are active antimicrobial agents against common microbial pathogens that cause various socially significant infectious diseases. Compound 6 showed pronounced antimicrobial activity against the Gram-positive test strain Staphylococcus aureus ATCC 6538, and compound 7 demonstrated pronounced antimicrobial activity against the Gram-negative test strain Escherichia coli ATCC 25922 (MIC = 6.3 µg/mL). This allowed us to consider these compounds to have great potential.
Collapse
Affiliation(s)
- Roza I Jalmakhanbetova
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | - Gulim K Mukusheva
- Faculty of Chemistry, Karaganda Buketov University, Karaganda 100024, Kazakhstan
| | - Alisher Sh Abdugalimov
- Department of Chemistry, Faculty of Natural Sciences, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan
| | | | - Wim Dehaen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Stijn Anthonissen
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, B-3001 Leuven, Belgium
| | - Yerlan M Suleimen
- Department of Chemistry, Chemical Technology and Ecology, Faculty of Technology, K. Kulazhanov Kazakh University of Technology and Business, Astana 010000, Kazakhstan
| | - Roza B Seidakhmetova
- Department of Clinical Pharmacology and Evidence-Based Medicine, Karaganda Medical University, Karaganda 100024, Kazakhstan
| |
Collapse
|
3
|
Akhmetova VR, Akhmadiev NS, Gubaidullin AT, Samigullina AI, Glazyrin AB, Sadykov RA, Ishmetova DV, Vakhitova YV. Novel binuclear copper(II) complexes with sulfanylpyrazole ligands: synthesis, crystal structure, fungicidal, cytostatic, and cytotoxic activity. Metallomics 2024; 16:mfae024. [PMID: 38802123 DOI: 10.1093/mtomcs/mfae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
New binuclear copper(II) [Cu(II)] tetraligand complexes (six examples) with sulfanylpyrazole ligands were synthesized. Electron spin resonance (ESR) studies have shown that in solution the complexes are transformed to the mononuclear one. Fungicidal properties against Candida albicans were found for the Cu complexes with benzyl and phenyl substituents. An in vitro evaluation of the cytotoxic properties of Cu chelates against HEK293, Jurkat, MCF-7, and THP-1 cells identified the Cu complex with the cyclohexylsulfanyl substituent in the pyrazole core as the lead compound, whereas the Cu complex without a sulfur atom in the pyrazole ligand had virtually no cytotoxic or fungicidal activity. The lead Cu(II) complex was more active than cisplatin. Effect of the S-containing Cu complex on apoptosis and cell cycle distribution has been investigated as well.
Collapse
Affiliation(s)
- Vnira R Akhmetova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Nail S Akhmadiev
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 141, Ufa 450075, Russia
| | - Aidar T Gubaidullin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Aida I Samigullina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of the Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russia
| | - Andrey B Glazyrin
- Ufa University of Science and Technology, Mingazheva str. 100, Ufa 450078, Russia
| | - Rais A Sadykov
- Ufa Institute of Chemistry, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, Prospekt Oktyabrya 71, Ufa 450054, Russia
| |
Collapse
|
4
|
Salimova EV, Parfenova LV, Ishmetova DV, Zainullina LF, Vakhitova YV. Synthesis of fusidane triterpenoid Mannich bases as potential antibacterial and antitumor agents. Nat Prod Res 2023; 37:3956-3963. [PMID: 36591608 DOI: 10.1080/14786419.2022.2163483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/03/2023]
Abstract
Mannich bases (8 examples) were synthesized via aminomethylation of fusidane propargyl esters. In vitro antimicrobial screening against key ESKAPE pathogens showed that the fusidic acid based Mannich products exhibit a high antimicrobial effect against Gram-positive bacteria Staphylococcus aureus and the fungus Cryptococcus neoformans. Moreover, the cytotoxic effect of fusidic acid and its analogs, which showed high antibacterial activity, was determined by MTT assay on cancer HepG2, HCT-116, SH-SY5Y, MCF-7, A549 and conditionally normal cells HEK293. A remarkable cytotoxic activity of fusidic acid propargyl ester and its aminomethylene derivatives against cancer and nontumoral HEK293 cells with IC50 values within 4.2-25 µM was found.
Collapse
Affiliation(s)
- Elena V Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Lyudmila V Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Diana V Ishmetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Liana F Zainullina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| | - Yulia V Vakhitova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center, Russian Academy of Sciences, Ufa, Russian Federation
| |
Collapse
|
5
|
Salimova EV, Mozgovoj OS, Efimova SS, Ostroumova OS, Parfenova LV. 3-Amino-Substituted Analogues of Fusidic Acid as Membrane-Active Antibacterial Compounds. MEMBRANES 2023; 13:309. [PMID: 36984696 PMCID: PMC10056636 DOI: 10.3390/membranes13030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Fusidic acid (FA) is an antibiotic with high activity against Staphylococcus aureus; it has been used in clinical practice since the 1960s. However, the narrow antimicrobial spectrum of FA limits its application in the treatment of bacterial infections. In this regard, this work aims both at the study of the antimicrobial effect of a number of FA amines and at the identification of their potential biological targets. In this way, FA analogues containing aliphatic and aromatic amino groups and biogenic polyamine, spermine and spermidine, moieties at the C-3 atom, were synthesized (20 examples). Pyrazinecarboxamide-substituted analogues exhibit a high antibacterial activity against S. aureus (MRSA) with MIC ≤ 0.25 μg/mL. Spermine and spermidine derivatives, along with activity against S. aureus, also inhibit the growth and reproduction of Gram-negative bacteria Escherichia coli, Acinetobacter baumannii, and Pseudomonas aeruginosa, and have a high fungicidal effect against Candida albicans and Cryptococcus neoformans. The study of the membrane activity demonstrated that the spermidine- and spermine-containing compounds are able to immerse into membranes and disorder the lipidsleading to a detergent effect. Moreover, spermine-based compounds are also able to form ion-permeable pores in the lipid bilayers mimicking the bacterial membranes. Using molecular docking, inhibition of the protein synthesis elongation factor EF-G was proposed, and polyamine substituents were shown to make the greatest contribution to the stability of the complexes of fusidic acid derivatives with biological targets. This suggests that the antibacterial effect of the obtained compounds may be associated with both membrane activity and inhibition of the elongation factor EF-G.
Collapse
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Oleg S. Mozgovoj
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| | - Svetlana S. Efimova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Olga S. Ostroumova
- Institute of Cytology of Russian Academy of Sciences, 4 Tikhoretsky Prospect, 194064 Saint Petersburg, Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences, 141 Prospect Oktyabrya, 450075 Ufa, Russia
| |
Collapse
|
6
|
Li H, Wu S, Yang X, He H, Wu Z, Song B, Song R. Synthesis, Antibacterial Activity, and Mechanisms of Novel Indole Derivatives Containing Pyridinium Moieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12341-12354. [PMID: 36136397 DOI: 10.1021/acs.jafc.2c04213] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The development of effective antibacterial agents equipped with novel action modes and unique skeletons starting from natural compounds serves as an important strategy in the modern pesticide industry. Disclosed here are a series of novel indole derivatives containing pyridinium moieties and their antibacterial activity evaluation against two prevalent phytopathogenic bacteria, Xanthomonas oryzae pv. oryzicola (Xoc) and X. oryzae pv. oryzae (Xoo). A three-dimensional (3D)-QSAR model was adopted to discover higher activity like title compounds based on the Xoc antibacterial activity of the tested compounds. Compound 43 was consequently designed, and it displayed higher antibacterial activity as expected with the half-maximal effective concentration EC50 values of 1.0 and 1.9 μg/mL for Xoo and Xoc, respectively, which were better than those of the commercial drug thiodiazole copper (TC) (72.9 and 87.5 μg/mL). Under greenhouse conditions, the results of a rice in vivo pot experiment indicated that the protective and curative activities of compound 43 against rice bacterial leaf streak (BLS) and rice bacterial blight (BLB) were 45.0 and 44.0% and 42.0 and 39.3%, respectively, which were better than those of the commercial agent thiodiazole copper (38.0 and 37.9%, 38.6 and 37.0%) as well. Scanning electron microscopy images, defense enzyme activity tests, and proteomic techniques were utilized in a preliminary mechanism study, suggesting that compound 43 shall modulate and interfere with the physiological processes and functions of pathogenic bacteria.
Collapse
Affiliation(s)
- Hongde Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shang Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xiong Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Hongfu He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Zengxue Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Baoan Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Runjiang Song
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
7
|
Mathada BS, Somappa SB. An insight into the recent developments in anti-infective potential of indole and associated hybrids. J Mol Struct 2022; 1261:132808. [PMID: 35291692 PMCID: PMC8913251 DOI: 10.1016/j.molstruc.2022.132808] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 12/16/2022]
Abstract
Prevention, accurate diagnosis, and effective treatment of infections are the main challenges in the overall management of infectious diseases. The best example is the ongoing SARs-COV-2(COVID-19) pandemic; the entire world is extremely worried about at present. Interestingly, heterocyclic moieties provide an ideal scaffold on which suitable pharmacophores can be designed to construct novel drugs. Indoles are amongst the most essential class of heteroaromatics in medicinal chemistry, which are ubiquitous across natural sources. The aforesaid derivatives have become invaluable scaffolds because of their wide spectrum therapeutic applications. Therefore, many researchers are focused on the design and synthesis of indole and associated hybrids of biological relevance. Hence, in the present review, we concisely discuss the indole containing natural sources, marketed drugs, clinical candidates, and their biological activities like antibacterial, antifungal, anti-TB, antiviral, antimalarial, and anti-leishmanial activities. The structure-activity relationships study of indole derivatives is also presented for a better understanding of the identified structures. The literature data presented for the anti-infective agents herein covers largely for the last twelve years.
Collapse
Affiliation(s)
| | - Sasidhar B Somappa
- Organic Chemistry Section, Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Thiruvananthapuram 695 019, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
8
|
Salimova EV, Mannanova LR, Kukovinets OS, Parfenova LV. Synthesis of Halo Derivatives of Fusidane Triterpenoids. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022070041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
9
|
Salimova EV, Parfenova LV. Fischer Reaction in the Synthesis of New Triterpene Indoles of the Fusidane Series. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1070428022010031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
An efficient one-pot synthesis of indolyl-4H-chromene derivatives. Chem Heterocycl Compd (N Y) 2022. [DOI: 10.1007/s10593-021-03040-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Long J, Ji W, Zhang D, Zhu Y, Bi Y. Bioactivities and Structure-Activity Relationships of Fusidic Acid Derivatives: A Review. Front Pharmacol 2021; 12:759220. [PMID: 34721042 PMCID: PMC8554340 DOI: 10.3389/fphar.2021.759220] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022] Open
Abstract
Fusidic acid (FA) is a natural tetracyclic triterpene isolated from fungi, which is clinically used for systemic and local staphylococcal infections, including methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci infections. FA and its derivatives have been shown to possess a wide range of pharmacological activities, including antibacterial, antimalarial, antituberculosis, anticancer, tumor multidrug resistance reversal, anti-inflammation, antifungal, and antiviral activity in vivo and in vitro. The semisynthesis, structural modification and biological activities of FA derivatives have been extensively studied in recent years. This review summarized the biological activities and structure-activity relationship (SAR) of FA in the last two decades. This summary can prove useful information for drug exploration of FA derivatives.
Collapse
Affiliation(s)
- Junjun Long
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Wentao Ji
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Doudou Zhang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yifei Zhu
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| | - Yi Bi
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, China
| |
Collapse
|
12
|
Salimova EV, Parfenova LV. Synthesis and Biological Activity of Oximes, Amines, and Lactams of Fusidane Triterpenoids. ChemistrySelect 2021. [DOI: 10.1002/slct.202102019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Elena V. Salimova
- Institute of Petrochemistry and Catalysis Russian Academy of Sciences Moskva 450075 Ufa, Pr. Octyabrya 141 Russia
| | - Lyudmila V. Parfenova
- Institute of Petrochemistry and Catalysis Russian Academy of Sciences Moskva 450075 Ufa, Pr. Octyabrya 141 Russia
| |
Collapse
|