1
|
Baxter JR, Holland DC, Gavranich B, Nicolle D, Hayton JB, Avery VM, Carroll AR. NMR Fingerprints of Formyl Phloroglucinol Meroterpenoids and Their Application to the Investigation of Eucalyptus gittinsii subsp. gittinsii. JOURNAL OF NATURAL PRODUCTS 2023; 86:1317-1334. [PMID: 37171174 DOI: 10.1021/acs.jnatprod.3c00139] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
NMR fingerprints provide powerful tools to identify natural products in complex mixtures. Principal component analysis and machine learning using 1H and 13C NMR data, alongside structural information from 180 published formyl phloroglucinols, have generated diagnostic NMR fingerprints to categorize subclasses within this group. This resulted in the reassignment of 167 NMR chemical shifts ascribed to 44 compounds. Three pyrano-diformyl phloroglucinols, euglobal In-1 and psiguadiols E and G, contained 1H and 13C NMR data inconsistent with their predicted phloroglucinol subclass. Subsequent reinterpretation of their 2D NMR data combined with DFT 13C NMR chemical shift and ECD calculations led to their structure revisions. Direct covariance processing of HMBC data permitted 1H resonances for individual compounds in mixtures to be associated, and analysis of their 1H/13C HMBC correlations using the fingerprint tool further classified components into phloroglucinol subclasses. NMR fingerprinting HMBC data obtained for six eucalypt flower extracts identified three subclasses of pyrano-acyl-formyl phloroglucinols from Eucalyptus gittinsii subsp. gittinsii. New, eucalteretial F and (+)-eucalteretial B, and known, (-)-euglobal VII and eucalrobusone C, compounds, each belonging to predicted subclasses, were isolated and characterized. Staphylococcus aureus and Plasmodium falciparum screening revealed eucalrobusone C as the most potent antiplasmodial formyl phloroglucinol to date.
Collapse
Affiliation(s)
- James R Baxter
- School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia
| | - Darren C Holland
- School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia
| | - Brody Gavranich
- School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia
| | - Dean Nicolle
- Currency Creek Arboretum, PO Box 808, Melrose Park, SA 5039, Australia
| | - Joshua B Hayton
- School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia
| | - Vicky M Avery
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Qld 4111, Australia
- Discovery Biology, Griffith University, Brisbane, QLD 4111, Australia
| | - Anthony R Carroll
- School of Environment and Science, Griffith University, Gold Coast, Qld 4222, Australia
- Griffith Institute for Drug Discovery, Griffith University, Brisbane, Qld 4111, Australia
| |
Collapse
|
2
|
Xiao X, Zhang X, Yang Z, Ji A, Wang C, Feng Q, Liu Z, Zhang RR. Six Unusual Meroterpenoids from the Leaves of Psidium guajava L. and Their PTP1B Inhibitory Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:4000-4006. [PMID: 35297245 DOI: 10.1021/acs.jafc.1c08089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Six unusual meroterpenoids, psidiguajadiol A-J (1-6), and three known meroterpenoids (7-9) were isolated from the leaves of Psidium guajava L. Compounds 2-6 represent the first examples of 6/8-formyl-5,7-dihydroxy-4-phenylchromane-coupled sesquiterpenoids. The structures of the undescribed compounds, including their absolute configurations, were elucidated by spectroscopic analyses, X-ray diffraction, and computational calculations. Compounds 3, 4, and 6 exhibited inhibitory activities against PTP1B with IC50 values of 9.83, 18.52, and 16.87 μM, respectively. In light of these findings, we performed molecular docking studies to predict their inhibition mechanisms at the atomic level.
Collapse
Affiliation(s)
- Xianfeng Xiao
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Xuerong Zhang
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhenkun Yang
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Aijia Ji
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Caiyan Wang
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Qian Feng
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Zhongqiu Liu
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| | - Rong-Rong Zhang
- Joint Laboratory for Translational Cancer Research on Chinese Medicine of the Ministry of Education of the People's Republic of China, International Institute for Translational Chinese Medicine, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, People's Republic of China
| |
Collapse
|
3
|
Nazir M, Saleem M, Tousif MI, Anwar MA, Surup F, Ali I, Wang D, Mamadalieva NZ, Alshammari E, Ashour ML, Ashour AM, Ahmed I, Elizbit, Green IR, Hussain H. Meroterpenoids: A Comprehensive Update Insight on Structural Diversity and Biology. Biomolecules 2021; 11:957. [PMID: 34209734 PMCID: PMC8301922 DOI: 10.3390/biom11070957] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 11/17/2022] Open
Abstract
Meroterpenoids are secondary metabolites formed due to mixed biosynthetic pathways which are produced in part from a terpenoid co-substrate. These mixed biosynthetically hybrid compounds are widely produced by bacteria, algae, plants, and animals. Notably amazing chemical diversity is generated among meroterpenoids via a combination of terpenoid scaffolds with polyketides, alkaloids, phenols, and amino acids. This review deals with the isolation, chemical diversity, and biological effects of 452 new meroterpenoids reported from natural sources from January 2016 to December 2020. Most of the meroterpenoids possess antimicrobial, cytotoxic, antioxidant, anti-inflammatory, antiviral, enzyme inhibitory, and immunosupressive effects.
Collapse
Affiliation(s)
- Mamona Nazir
- Department of Chemistry, Government Sadiq College Women University Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Saleem
- Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Imran Tousif
- Department of Chemistry, DG Khan Campus, University of Education Lahore, Dera Ghazi Khan 32200, Pakistan
| | - Muhammad Aijaz Anwar
- Pharmaceutical Research Division, PCSIR Laboratories Complex Karachi, Karachi 75280, Pakistan
| | - Frank Surup
- Microbial Drugs, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Iftikhar Ali
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
- Department of Chemistry, Karakoram International University, Gilgit 15100, Pakistan
| | - Daijie Wang
- School of Pharmaceutical Sciences and Key Laboratory for Applied Technology of Sophisticated Analytical Instruments of Shandong Province, Shandong Analysis and Test Center, School of Pharmaceutical Sciences, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Nilufar Z Mamadalieva
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str 77, Tashkent 100170, Uzbekistan
| | - Elham Alshammari
- Department of Pharmacy Practice, College of Pharmacy, Princess Nourah Bint Abdulrahman University, Riyadh 11671, Saudi Arabia
| | - Mohamed L Ashour
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah 21442, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Cairo 11566, Egypt
| | - Ahmed M Ashour
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, P.O. Box 13578, Makkah 21955, Saudi Arabia
| | - Ishtiaq Ahmed
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1TN, UK
| | - Elizbit
- Department of Materials Engineering, National University of Sciences and Technology (NUST) H12, Islamabad 44000, Pakistan
| | - Ivan R Green
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, Stellenbosch 7600, South Africa
| | - Hidayat Hussain
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle, Germany
| |
Collapse
|
4
|
Huang J, Li C, Ma J, Zang Y, Sun X, Chen X, Zhang D. Psiguamers A–C, three cytotoxic meroterpenoids bearing a methylated benzoylphloroglucinol framework from Psidium guajava and total synthesis of 1 and 2. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.11.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
5
|
Amino Acid Profiling Study of Psidium guajava L. Leaves as an Effective Treatment for Type 2 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:9784382. [PMID: 32382314 PMCID: PMC7195629 DOI: 10.1155/2020/9784382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 12/28/2019] [Accepted: 03/26/2020] [Indexed: 11/17/2022]
Abstract
Type 2 diabetes mellitus (T2DM) has become a major disease threatening human health worldwide. At present, the treatment of T2DM cannot cure diabetes and is prone to many side effects. Psidium guajava L. leaves have been reported to possess hypoglycemic activity, and they have been widely used in diabetes treatment in the folk. However, the antidiabetic mechanism has not been clearly explained. Also, the change in amino acid profile can reflect a metabolic disorder and provide insights into system-wide changes in response to physiological challenges or disease processes. The study found that P. guajava L. leaves can decrease fasting blood glucose and lipid levels in type 2 diabetic rats induced by streptozotocin. Through the analysis of amino acid profiling following 20 days of gavage administration, the concentration data were modeled by principal component analysis and orthogonal partial least squares discriminant analysis to find the different metabolites and related metabolic pathways (including cysteine and methionine metabolism, valine, leucine, and isoleucine biosynthesis, phenylalanine, tyrosine, and tryptophan biosynthesis) for the explanation of the hypoglycemic mechanism of P. guajava L., which provides an experimental and theoretical basis for diabetes prediction and for the development of new drugs for the treatment of diabetes.
Collapse
|