1
|
Forrestall KL, Burley DE, Cash MK, Pottie IR, Darvesh S. 2-Pyridone natural products as inhibitors of SARS-CoV-2 main protease. Chem Biol Interact 2020; 335:109348. [PMID: 33278462 PMCID: PMC7710351 DOI: 10.1016/j.cbi.2020.109348] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/05/2020] [Accepted: 11/26/2020] [Indexed: 12/16/2022]
Abstract
The disease, COVID-19, is caused by the severe acute respiratory coronavirus 2 (SARS-CoV-2) for which there is currently no treatment. The SARS-CoV-2 main protease (Mpro) is an important enzyme for viral replication. Small molecules that inhibit this protease could lead to an effective COVID-19 treatment. The 2-pyridone scaffold was previously identified as a possible key pharmacophore to inhibit SARS-CoV-2 Mpro. A search for natural, antimicrobial products with the 2-pyridone moiety was undertaken herein, and their calculated potency as inhibitors of SARS-CoV-2 Mpro was investigated. Thirty-three natural products containing the 2-pyridone scaffold were identified from the literature. An in silico methodology using AutoDock was employed to predict the binding energies and inhibition constants (Ki values) for each 2-pyridone-containing compound with SARS-CoV-2 Mpro. This consisted of molecular optimization of the 2-pyridone compound, docking of the compound with a crystal structure of SARS-CoV-2 Mpro, and evaluation of the predicted interactions and ligand-enzyme conformations. All compounds investigated bound to the active site of SARS-CoV-2 Mpro, close to the catalytic dyad (His-41 and Cys-145). Thirteen molecules had predicted Ki values <1 μM. Glu-166 formed a key hydrogen bond in the majority of the predicted complexes, while Met-165 had some involvement in the complex binding as a close contact to the ligand. Prominent 2-pyridone compounds were further evaluated for their ADMET properties. This work has identified 2-pyridone natural products with calculated potent inhibitory activity against SARS-CoV-2 Mpro and with desirable drug-like properties, which may lead to the rapid discovery of a treatment for COVID-19. 2-pyridone-scaffold is an inhibitory pharmacophore for SARS-CoV-2 Mpro. Thirty-three natural, antimicrobial products identified with 2-pyridone moiety. All 2-pyridone natural products bind to active site of SARS-CoV-2 Mproin silico. Thirteen molecules found to have potent inhibitory activity against SARS-CoV-2 Mpro. Inhibition of SARS-CoV-2 by natural 2-pyridones may lead to treatment of COVID-19.
Collapse
Affiliation(s)
- Katrina L Forrestall
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Darcy E Burley
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Meghan K Cash
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
| | - Ian R Pottie
- Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Chemistry, Faculty of Science, Saint Mary's University, Halifax, Nova Scotia, B3H 3C3, Canada
| | - Sultan Darvesh
- Department of Medical Neuroscience, Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada; Department of Chemistry and Physics, Faculty of Arts and Science, Mount Saint Vincent University, Halifax, Nova Scotia, B3M 2J6, Canada; Department of Medicine (Neurology), Faculty of Medicine, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada.
| |
Collapse
|