1
|
Gu G, Hou X, Xue M, Pan X, Dong J, Yang Y, Amuzu P, Xu D, Lai D, Zhou L. Diphenyl ethers from endophytic fungus Rhexocercosporidium sp. Dzf14 and their antibacterial activity by affecting homeostasis of cell membranes. PEST MANAGEMENT SCIENCE 2024; 80:2658-2667. [PMID: 38284314 DOI: 10.1002/ps.7972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/03/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Phytopathogenic bacteria cause severe losses to crops every year. The management of crop bacterial diseases with chemical agents has been considered as the main strategy. In order to cope with the bactericide resistance made by the pathogens, new antibacterials need to be continuously developed. RESULTS A chemical investigation from the endophytic fungus Rhexocercosporidium sp. Dzf14 has led to the isolation of 12 diphenyl ethers including two new ones named rhexocerin E (1) and rhexocercosporin G (2), along with two new depsides named rhexocerdepsides A (3) and B (4). The structures and absolute configurations of the new compounds were determined through comprehensive analysis of spectroscopic data and quantum chemical ECD calculations. Diphenyl ethers showed obviously antibacterial activity on Gram-positive bacteria. The structure-activity relationship of diphenyl ethers revealed that prenylation was critical to the antibacterial activity. Among them, rhexocercosporin D (12) possessed the strongest activity against Clavibacter michiganensis and Bacillus subtilis, and was selected for further mechanistic studies. It was found that rhexocercosporin D displayed bactericidal activity by affecting homeostasis of cell membranes. In addition to its rapid bactericidal effects on Gram-positive bacteria, rhexocercosporin D could restore the susceptibility against Gram-negative Agrobacterium tumefaciens by synergistic action with colistin. CONCLUSION Twelve diphenyl ethers and two depsides were isolated from endophytic fungus Rhexocercosporidium sp. Dzf14. Isopentenyl was critical for diphenyl ethers against Gram-positive bacteria. Rhexocercosporin D could affect homeostasis of bacterial cell membrane to exert rapid bactericidal activity. These findings highlight the antibacterial potential of the diphenyl ethers in crop bacterial disease management. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gan Gu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xuwen Hou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Mengyao Xue
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Xiaoqian Pan
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Jie Dong
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Yonglin Yang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Prosper Amuzu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
2
|
Gu G, Gong X, Xu D, Yang Y, Yin R, Dai J, Zhu K, Lai D, Zhou L. Diphenyl Ether Derivative Rhexocerins and Rhexocercosporins from the Endophytic Fungus Rhexocercosporidium sp. Dzf14 Active against Gram-Positive Bacteria with Multidrug-Resistance. JOURNAL OF NATURAL PRODUCTS 2023; 86:1931-1938. [PMID: 37486731 DOI: 10.1021/acs.jnatprod.3c00295] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Ten new diphenyl ether polyketides, including rhexocerins A-D (1-4) and rhexocercosporins A-F (5-10), together with three known congeners (11-13), were isolated from the endophytic fungus Rhexocercosporidium sp. Dzf14 obtained from Dioscorea zingiberensis. Their structures were elucidated by analysis of NMR and HRESIMS data, and their absolute configurations were determined by quantum chemical ECD calculations and X-ray crystallography. Compounds 1-4 featured an unprecedented tetracyclic carbon skeleton (6/7/5/6). Among them, compounds 1 and 5-9 showed antibacterial activities against methicillin-resistant S. aureus T144 and vancomycin-resistant E. faecalis 10.
Collapse
Affiliation(s)
- Gan Gu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Xiao Gong
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Dan Xu
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Yonglin Yang
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ruya Yin
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Jungui Dai
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100050, People's Republic of China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100193, People's Republic of China
| | - Daowan Lai
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| | - Ligang Zhou
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, People's Republic of China
| |
Collapse
|
3
|
Deshmukh SK, Dufossé L, Chhipa H, Saxena S, Mahajan GB, Gupta MK. Fungal Endophytes: A Potential Source of Antibacterial Compounds. J Fungi (Basel) 2022; 8:164. [PMID: 35205918 PMCID: PMC8877021 DOI: 10.3390/jof8020164] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/04/2022] [Accepted: 02/05/2022] [Indexed: 02/04/2023] Open
Abstract
Antibiotic resistance is becoming a burning issue due to the frequent use of antibiotics for curing common bacterial infections, indicating that we are running out of effective antibiotics. This has been more obvious during recent corona pandemics. Similarly, enhancement of antimicrobial resistance (AMR) is strengthening the pathogenicity and virulence of infectious microbes. Endophytes have shown expression of various new many bioactive compounds with significant biological activities. Specifically, in endophytic fungi, bioactive metabolites with unique skeletons have been identified which could be helpful in the prevention of increasing antimicrobial resistance. The major classes of metabolites reported include anthraquinone, sesquiterpenoid, chromone, xanthone, phenols, quinones, quinolone, piperazine, coumarins and cyclic peptides. In the present review, we reported 451 bioactive metabolites isolated from various groups of endophytic fungi from January 2015 to April 2021 along with their antibacterial profiling, chemical structures and mode of action. In addition, we also discussed various methods including epigenetic modifications, co-culture, and OSMAC to induce silent gene clusters for the production of noble bioactive compounds in endophytic fungi.
Collapse
Affiliation(s)
- Sunil K. Deshmukh
- TERI-Deakin Nano Biotechnology Centre, The Energy and Resources Institute, Darbari Seth Block, IHC Complex, Lodhi Road, New Delhi 110003, Delhi, India
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
| | - Laurent Dufossé
- Chimie et Biotechnologie des Produits Naturels (CHEMBIOPRO Lab) & ESIROI Agroalimentaire, Université de la Réunion, 15 Avenue René Cassin, 97744 Saint-Denis, France
| | - Hemraj Chhipa
- College of Horticulture and Forestry, Agriculture University Kota, Jhalawar 322360, Rajasthan, India;
| | - Sanjai Saxena
- Agpharm Bioinnovations LLP, Incubatee: Science and Technology Entrepreneurs Park (STEP), Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India;
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | | | - Manish Kumar Gupta
- SGT College of Pharmacy, SGT University, Gurugram 122505, Haryana, India;
| |
Collapse
|
4
|
|
5
|
Li XM, Mi QL, Gao Q, Li J, Song CM, Zeng WL, Xiang HY, Liu X, Chen JH, Zhang CM, Yang GY, Hu QF, Chen ZY. Antibacterial Naphthalene Derivatives from the Fermentation Products of the Endophytic Fungus Phomopsis fukushii. Chem Nat Compd 2021. [DOI: 10.1007/s10600-021-03340-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Xu TC, Lu YH, Wang JF, Song ZQ, Hou YG, Liu SS, Liu CS, Wu SH. Bioactive Secondary Metabolites of the Genus Diaporthe and Anamorph Phomopsis from Terrestrial and Marine Habitats and Endophytes: 2010-2019. Microorganisms 2021; 9:217. [PMID: 33494367 PMCID: PMC7912663 DOI: 10.3390/microorganisms9020217] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/17/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
The genus Diaporthe and its anamorph Phomopsis are distributed worldwide in many ecosystems. They are regarded as potential sources for producing diverse bioactive metabolites. Most species are attributed to plant pathogens, non-pathogenic endophytes, or saprobes in terrestrial host plants. They colonize in the early parasitic tissue of plants, provide a variety of nutrients in the cycle of parasitism and saprophytism, and participate in the basic metabolic process of plants. In the past ten years, many studies have been focused on the discovery of new species and biological secondary metabolites from this genus. In this review, we summarize a total of 335 bioactive secondary metabolites isolated from 26 known species and various unidentified species of Diaporthe and Phomopsis during 2010-2019. Overall, there are 106 bioactive compounds derived from Diaporthe and 246 from Phomopsis, while 17 compounds are found in both of them. They are classified into polyketides, terpenoids, steroids, macrolides, ten-membered lactones, alkaloids, flavonoids, and fatty acids. Polyketides constitute the main chemical population, accounting for 64%. Meanwhile, their bioactivities mainly involve cytotoxic, antifungal, antibacterial, antiviral, antioxidant, anti-inflammatory, anti-algae, phytotoxic, and enzyme inhibitory activities. Diaporthe and Phomopsis exhibit their potent talents in the discovery of small molecules for drug candidates.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shao-Hua Wu
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming 650091, China; (T.-C.X.); (Y.-H.L.); (J.-F.W.); (Z.-Q.S.); (Y.-G.H.); (S.-S.L.); (C.-S.L.)
| |
Collapse
|
7
|
Pentenyl Coumarins from the Roots and Stems of Nicotiana rustica and their Bioactivity. Chem Nat Compd 2020. [DOI: 10.1007/s10600-020-03215-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|