1
|
Podvysotskaya VS, Grigor'eva EV, Malakhova AA, Minina JM, Vyatkin YV, Khabarova EA, Rzaev JA, Medvedev SP, Kovalenko LV, Zakian SM. Generation and characterisation of seven induced pluripotent stem cell lines from two patients with Parkinson's disease carrying the pathological variant c.1087G>T of the LGR4 gene. Vavilovskii Zhurnal Genet Selektsii 2025; 29:15-25. [PMID: 40144372 PMCID: PMC11933898 DOI: 10.18699/vjgb-25-03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 03/28/2025] Open
Abstract
Parkinson's disease is a neurodegenerative disorder affecting dopaminergic neurons of the substantia nigra pars compacta. The known pathological genetic variants may explain the cause of only 5 % of cases of the disease. In our study, we found two patients with a clinical diagnosis of Parkinson's disease with the genetic variant c.1087G>T (p.Gly363Cys) of the LGR4 gene. The LGR4 gene encodes the membrane receptor LGR4 (leucine rich repeat containing G protein-coupled receptor 4) associated with the G protein. We hypothesize that the LGR4 gene may be either a direct cause or a risk factor for this disease, since it is one of the main participants of the WNT/β-catenin signalling pathway. This signalling pathway is necessary for the proliferation of neurons during their differentiation, which may lead to Parkinson's disease. To study the relationship between this genetic variant and Parkinson's disease, an ideal tool is a cellular model based on induced pluripotent stem cells (iPSCs) and their differentiated derivatives, dopaminergic neurons. We reprogrammed the peripheral blood mononuclear cells of the two patients with the c.1087G>T variant of the LGR4 gene with non-integrating episomal vectors expressing OCT4, SOX2, KLF4, LIN28, L-MYC and mp53DD proteins. The obtained seven lines of induced pluripotent stem cells were characterised in detail. The iPSCs lines obtained meet all the requirements of pluripotent cells, namely, they stably proliferate, form colonies with a morphology characteristic of human pluripotent cells, have a normal diploid karyotype, express endogenous alkaline phosphatase and pluripotency markers (OCT4, NANOG, SSEA-4 and SOX2) and are capable to differentiate into derivatives of the three germ layers. The iPSC lines obtained in this work can be used as a tool to generate a relevant model to study the effect of the pathological variant c.1087G>T of the LGR4 gene on dopaminergic neuron differentiation.
Collapse
Affiliation(s)
- V S Podvysotskaya
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Novosibirsk State University, Novosibirsk, Russia
| | - E V Grigor'eva
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - A A Malakhova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - J M Minina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | | | - E A Khabarova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Federal Neurosurgical Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - J A Rzaev
- Federal Neurosurgical Center of the Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - S P Medvedev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - L V Kovalenko
- Surgut State University, Surgut, Khanty-Mansiysk Autonomous Okrug - Ugra, Russia
| | - S M Zakian
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
2
|
Menzorov AG, Orishchenko KE, Fishman VS, Shevtsova AA, Mungalov RV, Pristyazhnyuk IE, Kizilova EA, Matveeva NM, Alenina N, Bader M, Rubtsov NB, Serov OL. Targeted genomic integration of EGFP under tubulin beta 3 class III promoter and mEos2 under tryptophan hydroxylase 2 promoter does not produce sufficient levels of reporter gene expression. J Cell Biochem 2019; 120:17208-17218. [PMID: 31106442 DOI: 10.1002/jcb.28981] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/27/2019] [Accepted: 04/11/2019] [Indexed: 01/14/2023]
Abstract
Neuronal tracing is a modern technology that is based on the expression of fluorescent proteins under the control of cell type-specific promoters. However, random genomic integration of the reporter construct often leads to incorrect spatial and temporal expression of the marker protein. Targeted integration (or knock-in) of the reporter coding sequence is supposed to provide better expression control by exploiting endogenous regulatory elements. Here we describe the generation of two fluorescent reporter systems: enhanced green fluorescent protein (EGFP) under pan-neural marker class III β-tubulin (Tubb3) promoter and mEos2 under serotonergic neuron-specific tryptophan hydroxylase 2 (Tph2) promoter. Differentiation of Tubb3-EGFP embryonic stem (ES) cells into neurons revealed that though Tubb3-positive cells express EGFP, its expression level is not sufficient for the neuronal tracing by routine fluorescent microscopy. Similarly, the expression levels of mEos2-TPH2 in differentiated ES cells was very low and could be detected only on messenger RNA level using polymerase chain reaction-based methods. Our data shows that the use of endogenous regulatory elements to control transgene expression is not always beneficial compared with the random genomic integration.
Collapse
Affiliation(s)
- Aleksei G Menzorov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Konstantin E Orishchenko
- Laboratory of Molecular Genetic Technologies of the Institute for Living Systems, Immanuel Kant Baltic Federal University, Kaliningrad, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Veniamin S Fishman
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Anastasia A Shevtsova
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Roman V Mungalov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Inna E Pristyazhnyuk
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Elena A Kizilova
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia M Matveeva
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Natalia Alenina
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Michael Bader
- Laboratory of Molecular Biology of Peptide Hormones, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - Nikolai B Rubtsov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia.,Cell Biology Department, Institute of Cytology and Genetics of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg L Serov
- Department of Molecular Mechanisms of Development, Institute of Cytology and Genetics Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia.,Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| |
Collapse
|
3
|
Suldina LA, Morozova KN, Menzorov AG, Kizilova EA, Kiseleva E. Mitochondria structural reorganization during mouse embryonic stem cell derivation. PROTOPLASMA 2018; 255:1373-1386. [PMID: 29549502 DOI: 10.1007/s00709-018-1236-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/02/2018] [Indexed: 06/08/2023]
Abstract
Mouse embryonic stem (ES) cells are widely used in developmental biology and transgenic research. Despite numerous studies, ultrastructural reorganization of inner cell mass (ICM) cells during in vitro culture has not yet been described in detail. Here, we for the first time performed comparative morphological and morphometric analyses of three ES cell lines during their derivation in vitro. We compared morphological characteristics of blastocyst ICM cells at 3.5 and 4.5 days post coitum on feeder cells (day 6, passage 0) with those of ES cells at different passages (day 19, passage 2; day 25, passage 4; and passage 15). At passage 0, there were 23-36% of ES-like cells with various values of the medium cross-sectional area and nucleocytoplasmic parameters, 55% of fibroblast-like (probably trophoblast derivatives), and ~ 19% of dying cells. ES-like cells at passage 0 contained autolysosomes and enlarged mitochondria with reduced numerical density per cell. There were three types of mitochondria that differed in matrix density and cristae width. For the first time, we revealed cells that had two and sometimes three morphologically distinct mitochondria types in the cytoplasm. At passage 2, there were mostly ES cells with a high nucleocytoplasmic ratio and a cytoplasm depleted of organelles. At passage 4, ES cell morphology and morphometric parameters were mostly stable with little heterogeneity. According to our data, cellular structures of ICM cells undergo destabilization during derivation of an ES cell line with subsequent reorganization into the structures typical for ES cells. On the basis of ultrastructural analysis of mitochondria, we believe that the functional activity of these organelles changes during early stages of ES cell formation from the ICM.
Collapse
Affiliation(s)
- Lyubov A Suldina
- Institute of Cytology and Genetics SB RAS, Russian Academy of Sciences, Lavrentiev ave., 10, Novosibirsk, Russia, 630090
| | - Ksenia N Morozova
- Institute of Cytology and Genetics SB RAS, Russian Academy of Sciences, Lavrentiev ave., 10, Novosibirsk, Russia, 630090.
- Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - Aleksei G Menzorov
- Institute of Cytology and Genetics SB RAS, Russian Academy of Sciences, Lavrentiev ave., 10, Novosibirsk, Russia, 630090
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | - Elena A Kizilova
- Institute of Cytology and Genetics SB RAS, Russian Academy of Sciences, Lavrentiev ave., 10, Novosibirsk, Russia, 630090
| | - Elena Kiseleva
- Institute of Cytology and Genetics SB RAS, Russian Academy of Sciences, Lavrentiev ave., 10, Novosibirsk, Russia, 630090
| |
Collapse
|
4
|
Alternative dominance of the parental genomes in hybrid cells generated through the fusion of mouse embryonic stem cells with fibroblasts. Sci Rep 2017; 7:18094. [PMID: 29273752 PMCID: PMC5741742 DOI: 10.1038/s41598-017-18352-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 12/11/2017] [Indexed: 01/01/2023] Open
Abstract
For the first time, two types of hybrid cells with embryonic stem (ES) cell-like and fibroblast-like phenotypes were produced through the fusion of mouse ES cells with fibroblasts. Transcriptome analysis of 2,848 genes differentially expressed in the parental cells demonstrated that 34-43% of these genes are expressed in hybrid cells, consistent with their phenotypes; 25-29% of these genes display intermediate levels of expression, and 12-16% of these genes maintained expression at the parental cell level, inconsistent with the phenotype of the hybrid cell. Approximately 20% of the analyzed genes displayed unexpected expression patterns that differ from both parents. An unusual phenomenon was observed, namely, the illegitimate activation of Xist expression and the inactivation of one of two X-chromosomes in the near-tetraploid fibroblast-like hybrid cells, whereas both Xs were active before and after in vitro differentiation of the ES cell-like hybrid cells. These results and previous data obtained on heterokaryons suggest that the appearance of hybrid cells with a fibroblast-like phenotype reflects the reprogramming, rather than the induced differentiation, of the ES cell genome under the influence of a somatic partner.
Collapse
|
5
|
Yu Y, Gao Q, Zhao HC, Li R, Gao JM, Ding T, Bao SY, Zhao Y, Sun XF, Fan Y, Qiao J. Ascorbic acid improves pluripotency of human parthenogenetic embryonic stem cells through modifying imprinted gene expression in the Dlk1-Dio3 region. Stem Cell Res Ther 2015; 6:69. [PMID: 25879223 PMCID: PMC4425892 DOI: 10.1186/s13287-015-0054-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 10/29/2014] [Accepted: 03/16/2015] [Indexed: 12/13/2022] Open
Abstract
Introduction Human parthenogenetic embryonic stem cells (hpESCs) are generated from artificially activated oocytes, however, the issue of whether hpESCs have equivalent differentiation ability to human fertilized embryonic stem cells remains controversial. Methods hpESCs were injected into male severe combined immunodeficiency (SCID) mice and the efficiency of teratoma formation was calculated. Then the gene expression and methylation modification were detected by real time-PCR and bisulfate methods. Results Comparison of five hpESCs with different differentiation abilities revealed that levels of paternal genes in the Dlk1-Dio3 region on chromosome 14 in the hpESCs with high differentiation potential are enhanced, but strictly methylated and silenced in the hpESCs with lower differentiation potential. Treatment with ascorbic acid, rescued their ability to support teratoma formation and altered the expression profiles of paternally expressed genes in hpESCs that could not form teratoma easily. No differences in the expression of other imprinting genes were evident between hpESCs with higher and lower differentiation potential, except for those in the Dlk1-Dio3 region. Conclusions The Dlk1-Dio3 imprinting gene cluster distinguishes the differentiation ability of hpESCs. Moreover, modification by ascorbic acid may facilitate application of hpESCs to clinical settings in the future by enhancing their pluripotency. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0054-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yang Yu
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Qian Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Hong-cui Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Rong Li
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Jiang-man Gao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China.
| | - Ting Ding
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Si-yu Bao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China.
| | - Yue Zhao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| | - Xiao-fang Sun
- Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Yong Fan
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory for Major Obstetric Diseases of Guangdong Province, the Third Affiliated Hospital of Guangzhou Medical University, No. 63, Liwan District, Guangzhou City, 510150, Guangdong Province, People's Republic of China.
| | - Jie Qiao
- Department of Obstetrics and Gynecology, Center of Reproductive Medicine, Peking University Third Hospital, No. 49 HuaYuan North Road, HaiDian District, Beijing, 100191, People's Republic of China. .,Key Laboratory of Assisted Reproduction, Ministry of Education, Beijing, 100191, China. .,Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, China.
| |
Collapse
|