1
|
Hadrup N, Sørli JB, Sharma AK. Response to commentary on "Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review". Toxicology 2022; 480:153323. [PMID: 36115644 DOI: 10.1016/j.tox.2022.153323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 10/14/2022]
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
2
|
Hadrup N, Sørli JB, Sharma AK. Pulmonary toxicity, genotoxicity, and carcinogenicity evaluation of molybdenum, lithium, and tungsten: A review. Toxicology 2022; 467:153098. [PMID: 35026344 DOI: 10.1016/j.tox.2022.153098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 12/30/2022]
Abstract
Molybdenum, lithium, and tungsten are constituents of many products, and exposure to these elements potentially occurs at work. Therefore it is important to determine at what levels they are toxic, and thus we set out to review their pulmonary toxicity, genotoxicity, and carcinogenicity. After pulmonary exposure, molybdenum and tungsten are increased in multiple tissues; data on the distribution of lithium are limited. Excretion of all three elements is both via faeces and urine. Molybdenum trioxide exerted pulmonary toxicity in a 2-year inhalation study in rats and mice with a lowest-observed-adverse-effect concentration (LOAEC) of 6.6 mg Mo/m3. Lithium chloride had a LOAEC of 1.9 mg Li/m3 after subacute inhalation in rabbits. Tungsten oxide nanoparticles resulted in a no-observed-adverse-effect concentration (NOAEC) of 5 mg/m3 after inhalation in hamsters. In another study, tungsten blue oxide had a LOAEC of 63 mg W/m3 in rats. Concerning genotoxicity, for molybdenum, the in vivo genotoxicity after inhalation remains unknown; however, there was some evidence of carcinogenicity of molybdenum trioxide. The data on the genotoxicity of lithium are equivocal, and one carcinogenicity study was negative. Tungsten seems to have a genotoxic potential, but the data on carcinogenicity are equivocal. In conclusion, for all three elements, dose descriptors for inhalation toxicity were identified, and the potential for genotoxicity and carcinogenicity was assessed.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Jorid B Sørli
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen, Denmark.
| | - Anoop K Sharma
- Division for Risk Assessment and Nutrition, Group for Chemical Risk Assessment and GMO, National Food Institute, Technical University of Denmark, Kemitorvet, 201, 031, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
3
|
Türkez H, Arslan ME, Sönmez E, Tatar A, Geyikoğlu F, Açikyildiz M, Mardinoğlu A. Safety Assessments of Nickel Boride Nanoparticles on the Human Pulmonary Alveolar Cells by Using Cell Viability and Gene Expression Analyses. Biol Trace Elem Res 2021; 199:2602-2611. [PMID: 32909113 DOI: 10.1007/s12011-020-02374-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022]
Abstract
Nickel boride is generally used in the steel industry as a melting accelerator due to its feature of creating a protective and stable attribute at high temperatures. It is also used to improve the hardenability of the steel with boron addition in the production. Thus, safety studies and biocompatibility analysis of nickel boride should be performed comprehensively to understand the limitations of use in various areas. In the present study, nickel boride nanoparticles (Ni2B NPs) were synthesized by a single-step method and molecule characterizations were performed via the use of X-ray diffraction analysis (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and energy dispersive X-ray (EDX) analyses. Cytotoxicity properties of Ni2B NPs were identified on human pulmonary alveolar epithelial cells (HPAEpiC) by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), neutral red (NR), and lactate dehydrogenase (LDH) assays. Illumina human ht-12 v4.0 whole-genome microarray analysis was conducted to investigate NiB2 NPs effects on gene expression regulations of HPAEpiC cells. The database for annotation, visualization, and integrated discovery (DAVID) analysis was performed to reveal the relationship between Ni2B NP application and cellular pathway alterations. According to cytotoxicity analysis, the IC50 value for Ni2B NP application was found as 81.99 mg/L concentration. Microarray analysis of Ni2B NP application was shown for the first time that 693 gene expression changes (FC ≥ 2) occurred significantly over 40.000 gene probes and Ni2B NPs were observed to affect microtubule regulation, centrosome organization, and phosphoprotein synthesis.
Collapse
Affiliation(s)
- Hasan Türkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey.
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum, Turkey
| | - Metin Açikyildiz
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis, Turkey
| | - Adil Mardinoğlu
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King's College London, London, SE1 9RT, UK
| |
Collapse
|
4
|
Türkez H, Arslan ME, Sönmez E, Geyikoğlu F, Açıkyıldız M, Tatar A. Microarray assisted toxicological investigations of boron carbide nanoparticles on human primary alveolar epithelial cells. Chem Biol Interact 2019; 300:131-137. [PMID: 30684454 DOI: 10.1016/j.cbi.2019.01.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/24/2018] [Accepted: 01/22/2019] [Indexed: 01/03/2023]
Abstract
It is important to understand the adverse effects of nanoparticles on human health and to prepare risk reports for widely used nanoscale materials. Synthesis, characterization and cytotoxicity evaluation of B4C nanoparticles were performed on HPAEpiC since, first encounter with nanoparticles would generally happen through lung by inhaling chemicals. B4C nanoparticles were synthesized via chemical vapor deposition techniques and characterized by using transmission electron microscope (TEM), scanning electron microscope (SEM) and X-ray crystallography (XRD). 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), lactate dehydrogenase (LDH) and neutral red (NR) tests were used to analyze cell viability and cytotoxicity against nanoparticles exposure. Microarray analysis was used to discover whole genome effects of B4C NPs on gene expressions changes of HPAEpiC cells. Then, the database for annotation, visualization and integrated discovery (DAVID) analysis was performed to understand relationships between gene pathways and nanoparticle exposure. Finally, cytotoxicity analysis revealed that IC20 value for boron carbide (B4C) nanoparticles was 202.525 mg/L. According to microarray analysis 32 genes expression change significantly (FC ≥ 2) over 40,000 genes scanning. The gene pathways analysis showed that boron carbide (B4C) nanoparticles mostly affect amino acid biosynthesis process, TGF-beta signaling pathway and developmental proteins regulation. In conclusion, our results supported for the first time that boron carbide (B4C) nanoparticles could be used as a safe nanomaterial in both pharmacological and medical applications.
Collapse
Affiliation(s)
- Hasan Türkez
- Erzurum Technical University, Department of Molecular Biology and Genetics, Faculty of Science, Erzurum, 25240, Turkey; Department of Pharmacy, University "G. d'Annunzio" of Chieti-Pescara, Via dei Vestini 31, 66100, Chieti Scalo (CH), Italy
| | - Mehmet Enes Arslan
- Erzurum Technical University, Department of Molecular Biology and Genetics, Faculty of Science, Erzurum, 25240, Turkey.
| | - Erdal Sönmez
- Advanced Materials Research Laboratory, Department of Nanoscience & Nanoengineering, Graduate School of Natural and Applied Sciences, Ataturk University, Erzurum, Turkey
| | - Fatime Geyikoğlu
- Department of Biology, Faculty of Arts and Sciences, Atatürk University, Erzurum, Turkey
| | - Metin Açıkyıldız
- Department of Chemistry, Faculty of Science and Art, Kilis 7 Aralık University, Kilis, Turkey
| | - Abdulgani Tatar
- Department of Medical Genetics, Medical Faculty, Atatürk University, Erzurum, Turkey
| |
Collapse
|
5
|
Synthesis, characterization and cytotoxicity of boron nitride nanoparticles: emphasis on toxicogenomics. Cytotechnology 2019; 71:351-361. [PMID: 30644070 DOI: 10.1007/s10616-019-00292-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/18/2016] [Indexed: 10/27/2022] Open
Abstract
Nanotechnology is increasingly developing area including more than 700 commercial products such as clothing, food preparation, cosmetics, mechanics, electronics and also health industry. People generally contact with nanoparticles by inhaling from air. Thus, it is becoming important issue to understand harmful effects of nanoparticles on human health and prepare risk reports for common nano-sized materials. In this paper, synthesis, characterization and cytotoxicity evaluation of boron nitride (BN) nanoparticles were performed on human primary alveolar epithelial cells (HPAEpiC) since, main exposure to nanoparticles would generally happen through lung via inhalation. Chemically synthetized BN nanoparticles were characterized by using X-ray crystallography, transmission electron microscope, scanning electron microscope and energy-dispersive X-ray spectroscopy techniques. 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide, neutral red and lactate dehydrogenase release assays were used to analyze cytotoxicity after nanoparticles exposure. Whole genome microarray analysis was used to find out the effects of BN NPs on gene expressions of HPAEpiC cells. Finally, the database for annotation, visualization and integrated discovery analysis was used to reveal relationships between different cellular pathways and nanoparticle exposure. According to cytotoxicity analysis LC20 value for BN nanoparticles was 125.051 mg/L. Microarray results showed that 2159 genes expression change (FC ≥ 2) significantly over 40,000 genes analysis. When the gene pathways were analyzed, it was seemed that BN nanoparticles mostly affect cell cycle, cell-cell interactions, cancer affecting genes and signal transduction. In a conclusion, our results supported for the first time that BN nanoparticles could be used as a safe nanomaterial in both pharmacological and medical applications.
Collapse
|
6
|
Toxicogenomic responses of human alveolar epithelial cells to tungsten boride nanoparticles. Chem Biol Interact 2017; 273:257-265. [PMID: 28666766 DOI: 10.1016/j.cbi.2017.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 06/08/2017] [Accepted: 06/26/2017] [Indexed: 01/29/2023]
Abstract
During the recent years, microarray analysis of gene expression has become an inevitable tool for exploring toxicity of drugs and other chemicals on biological systems. Therefore, toxicogenomics is considered as a fruitful area for searching cellular pathways and mechanisms including cancer, immunological diseases, environmental responses, gene-gene interactions and chemical toxicity. In this work, we examined toxic effects of Tungsten Borides NPs on gene expression profiling of the human lung alveolar epithelial cells (HPAEpiC). In line with this purpose, a single crystal of tungsten boride (mixture of WB and W2B) nanoparticles was synthesized by means of zone melting method, and characterized via using X-ray crystallography (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM) and energy-dispersive X-ray spectroscopy (EDX) techniques. Cell viability and cytotoxicity were determined by 3-(4,5-dimethyl-thiazol-2-yl) 2,5-diphenyltetrazolium bromide (MTT), neutral red (NR) and lactate dehydrogenase (LDH) release tests. The whole genome microarray expression analysis was performed to find out the effects of WB and W2B NPs mixture on gene expression of the HPAEpiC cell culture. 123 of 40,000 gene probes were assigned to characterize expression profile for WB/W2B NPs exposure. According to results; 70 genes were up-regulated and 53 genes were down-regulated (≥2 fold change). For further investigations, these genes were functionally classified by using DAVID (The Database for Annotation, Visualization and Integrated Discovery) with gene ontology (GO) analysis. In the light of the data gained from this study, it could be concluded that the mixture of WB/W2B NPs can affect cytokine/chemokine metabolism, angiogenesis and prevent migration/invasion by activating various genes.
Collapse
|