1
|
Königer L, Malkmus C, Mahdy D, Däullary T, Götz S, Schwarz T, Gensler M, Pallmann N, Cheufou D, Rosenwald A, Möllmann M, Groneberg D, Popp C, Groeber‐Becker F, Steinke M, Hansmann J. ReBiA-Robotic Enabled Biological Automation: 3D Epithelial Tissue Production. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2406608. [PMID: 39324843 PMCID: PMC11615785 DOI: 10.1002/advs.202406608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/08/2024] [Indexed: 09/27/2024]
Abstract
The Food and Drug Administration's recent decision to eliminate mandatory animal testing for drug approval marks a significant shift to alternative methods. Similarly, the European Parliament is advocating for a faster transition, reflecting public preference for animal-free research practices. In vitro tissue models are increasingly recognized as valuable tools for regulatory assessments before clinical trials, in line with the 3R principles (Replace, Reduce, Refine). Despite their potential, barriers such as the need for standardization, availability, and cost hinder their widespread adoption. To address these challenges, the Robotic Enabled Biological Automation (ReBiA) system is developed. This system uses a dual-arm robot capable of standardizing laboratory processes within a closed automated environment, translating manual processes into automated ones. This reduces the need for process-specific developments, making in vitro tissue models more consistent and cost-effective. ReBiA's performance is demonstrated through producing human reconstructed epidermis, human airway epithelial models, and human intestinal organoids. Analyses confirm that these models match the morphology and protein expression of manually prepared and native tissues, with similar cell viability. These successes highlight ReBiA's potential to lower barriers to broader adoption of in vitro tissue models, supporting a shift toward more ethical and advanced research methods.
Collapse
Affiliation(s)
- Lukas Königer
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christoph Malkmus
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| | - Dalia Mahdy
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Thomas Däullary
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
- Chair of Cellular ImmunotherapyUniversity Hospital Würzburg97080WürzburgGermany
| | - Susanna Götz
- Faculty of Design WürzburgTechnical University of Applied Sciences Würzburg‐Schweinfurt97070WürzburgGermany
| | - Thomas Schwarz
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Marius Gensler
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Niklas Pallmann
- Chair of Tissue Engineering and Regenerative MedicineUniversity Hospital Würzburg97070WürzburgGermany
| | - Danjouma Cheufou
- Department of Thoracic SurgeryKlinikum Würzburg Mitte97070WürzburgGermany
| | | | - Marc Möllmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Dieter Groneberg
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Christina Popp
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
| | - Florian Groeber‐Becker
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of OphthalmologyUniversity Clinic Düsseldorf40225DüsseldorfGermany
| | - Maria Steinke
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Department of Oto‐Rhino‐LaryngologyPlasticAesthetic and Reconstructive Head and Neck SurgeryUniversity Hospital Würzburg97080WürzburgGermany
| | - Jan Hansmann
- Translational Center Regenerative TherapiesFraunhofer Institute for Silicate Research ISC97070WürzburgGermany
- Institute of Medical Engineering SchweinfurtTechnical University of Applied Sciences Würzburg‐Schweinfurt97421SchweinfurtGermany
| |
Collapse
|
2
|
Davoudi F, Ghorbanpoor S, Yoda S, Pan X, Crowther GS, Yin X, Murchie E, Hata AN, Willers H, Benes CH. Alginate-based 3D cancer cell culture for therapeutic response modeling. STAR Protoc 2021; 2:100391. [PMID: 33778784 PMCID: PMC7985559 DOI: 10.1016/j.xpro.2021.100391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two-dimensional (2D) culture of tumor cells fails to recapitulate some important aspects of cellular organization seen in in vivo experiments. In addition, cell cultures traditionally use non-physiological concentration of nutrients. Here, we describe a protocol for a facile three-dimensional (3D) culture format for cancer cells. This 3D platform helps overcome the 2D culture limitations. In addition, it allows for longitudinal modeling of responses to cancer therapeutics. For complete details on the use and execution of this protocol, please refer to Lhuissier et al. (2017), Lehmann et al. (2016), Liu et al. (2016), and Duval et al. (2011). A detailed protocol on hydrogel-based 3D culture of patient-derived tumor cell lines No binding sites for cells in hydrogel polymers allowing for pure interaction of cells Longitudinal 3D proliferation assays and drug-response assessments Quick and easy recovery of 3D-cultured cells for downstream experiments
Collapse
Affiliation(s)
- Farideh Davoudi
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Samar Ghorbanpoor
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Satoshi Yoda
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Xiao Pan
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Giovanna Stein Crowther
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Xunqin Yin
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Ellen Murchie
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Aaron N Hata
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| | - Henning Willers
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| | - Cyril H Benes
- Massachusetts General Hospital, Center for Cancer Research, Harvard Medical School, 149 13th Street, Boston, MA 02129, USA
| |
Collapse
|
3
|
Ochiai K, Motozawa N, Terada M, Horinouchi T, Masuda T, Kudo T, Kamei M, Tsujikawa A, Matsukuma K, Natsume T, Kanda GN, Takahashi M, Takahashi K. A Variable Scheduling Maintenance Culture Platform for Mammalian Cells. SLAS Technol 2020; 26:209-217. [PMID: 33269985 PMCID: PMC7985857 DOI: 10.1177/2472630320972109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Cell culturing is a basic experimental technique in cell biology and medical science. However, culturing high-quality cells with a high degree of reproducibility relies heavily on expert skills and tacit knowledge, and it is not straightforward to scale the production process due to the education bottleneck. Although many automated culture systems have been developed and a few have succeeded in mass production environments, very few robots are permissive of frequent protocol changes, which are often required in basic research environments. LabDroid is a general-purpose humanoid robot with two arms that performs experiments using the same tools as humans. Combining our newly developed AI software with LabDroid, we developed a variable scheduling system that continuously produces subcultures of cell lines without human intervention. The system periodically observes the cells on plates with a microscope, predicts the cell growth curve by processing cell images, and decides the best times for passage. We have succeeded in developing a system that maintains the cultures of two HEK293A cell plates with no human intervention for 192 h.
Collapse
Affiliation(s)
- Koji Ochiai
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Naohiro Motozawa
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan.,Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Motoki Terada
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Takaaki Horinouchi
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,Laboratory for Multiscale Biosystem Dynamics, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| | - Tomohiro Masuda
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan
| | - Taku Kudo
- Robotic Biology Institute Inc., Koto-ku, Tokyo, Japan
| | | | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | | | - Tohru Natsume
- Robotic Biology Institute Inc., Koto-ku, Tokyo, Japan.,Department of Life Science and Biotechnology, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Koto-ku, Tokyo, Japan
| | - Genki N Kanda
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan.,Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan.,Robotic Biology Institute Inc., Koto-ku, Tokyo, Japan
| | - Masayo Takahashi
- Laboratory for Retinal Regeneration, RIKEN Center for Biosystems Dynamics Research, Chuo-ku, Kobe, Hyogo, Japan.,VisionCare Inc., Chuo-ku, Kobe, Hyogo, Japan
| | - Koichi Takahashi
- Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research, Suita, Osaka, Japan
| |
Collapse
|