1
|
Dupuy S, Salvador J, Morille M, Noël D, Belamie E. Control and interplay of scaffold-biomolecule interactions applied to cartilage tissue engineering. Biomater Sci 2025; 13:1871-1900. [PMID: 40052975 DOI: 10.1039/d5bm00049a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Cartilage tissue engineering based on the combination of biomaterials, adult or stem cells and bioactive factors is a challenging approach for regenerative medicine with the aim of achieving the formation of a functional neotissue stable in the long term. Various 3D scaffolds have been developed to mimic the extracellular matrix environment and promote cartilage repair. In addition, bioactive factors have been extensively employed to induce and maintain the cartilage phenotype. However, the spatiotemporal control of bioactive factor release remains critical for maximizing the regenerative potential of multipotent cells, such as mesenchymal stromal cells (MSCs), and achieving efficient chondrogenesis and sustained tissue homeostasis, which are essential for the repair of hyaline cartilage. Despite advances, the effective delivery of bioactive factors is limited by challenges such as insufficient retention at the site of injury and the loss of therapeutic efficacy due to uncontrolled drug release. These limitations have prompted research on biomolecule-scaffold interactions to develop advanced delivery systems that provide sustained release and controlled bioavailability of biological factors, thereby improving therapeutic outcomes. This review focuses specifically on biomaterials (natural, hybrid and synthetic) and biomolecules (molecules, proteins, nucleic acids) of interest for cartilage engineering. Herein, we review in detail the approaches developed to maintain the biomolecules in scaffolds and control their release, based on their chemical nature and structure, through steric, non-covalent and/or covalent interactions, with a view to their application in cartilage repair.
Collapse
Affiliation(s)
- Silouane Dupuy
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Jérémy Salvador
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Marie Morille
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
| | - Danièle Noël
- IRMB, University of Montpellier, INSERM, Montpellier, France
| | - Emmanuel Belamie
- ICGM, University of Montpellier, CNRS, ENSCM, Montpellier, France.
- EPHE, PSL Research University, 75014 Paris, France
| |
Collapse
|
2
|
Tee CA, Roxby DN, Othman R, Denslin V, Bhat KS, Yang Z, Han J, Tucker-Kellogg L, Boyer LA. Metabolic modulation to improve MSC expansion and therapeutic potential for articular cartilage repair. Stem Cell Res Ther 2024; 15:308. [PMID: 39285485 PMCID: PMC11406821 DOI: 10.1186/s13287-024-03923-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 09/04/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Articular cartilage degeneration can result from injury, age, or arthritis, causing significant joint pain and disability without surgical intervention. Currently, the only FDA cell-based therapy for articular cartilage injury is Autologous Chondrocyte Implantation (ACI); however, this procedure is costly, time-intensive, and requires multiple treatments. Mesenchymal stromal cells (MSCs) are an attractive alternative autologous therapy due to their availability and ability to robustly differentiate into chondrocytes for transplantation with good safety profiles. However, treatment outcomes are variable due to donor-to-donor variability as well as intrapopulation heterogeneity and unstandardized MSC manufacturing protocols. Process improvements that reduce cell heterogeneity while increasing donor cell numbers with improved chondrogenic potential during expansion culture are needed to realize the full potential of MSC therapy. METHODS In this study, we investigated the potential of MSC metabolic modulation during expansion to enhance their chondrogenic commitment by varying the nutrient composition, including glucose, pyruvate, glutamine, and ascorbic acid in culture media. We tested the effect of metabolic modulation in short-term (one passage) and long-term (up to seven passages). We measured metabolic state, cell size, population doubling time, and senescence and employed novel tools including micro-magnetic resonance relaxometry (µMRR) relaxation time (T2) to characterize the effects of AA on improved MSC expansion and chondrogenic potential. RESULTS Our data show that the addition of 1 mM L-ascorbic acid-2-phosphate (AA) to cultures for one passage during MSC expansion prior to initiation of differentiation improves chondrogenic differentiation. We further demonstrate that AA treatment reduced the proportion of senescent cells and cell heterogeneity also allowing for long-term expansion that led to a > 300-fold increase in yield of MSCs with enhanced chondrogenic potential compared to untreated cells. AA-treated MSCs with improved chondrogenic potential showed a robust shift in metabolic profile to OXPHOS and higher µMRR T2 values, identifying critical quality attributes that could be implemented in MSC manufacturing for articular cartilage repair. CONCLUSIONS Our results suggest an improved MSC manufacturing process that can enhance chondrogenic potential by targeting MSC metabolism and integrating process analytic tools during expansion.
Collapse
Affiliation(s)
- Ching Ann Tee
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Daniel Ninio Roxby
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Rashidah Othman
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
| | - Vinitha Denslin
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
| | - Kiesar Sideeq Bhat
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Bioresources, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | - Zheng Yang
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- NUS Tissue Engineering Program, Life Sciences Institute, National University of Singapore, 27 Medical Drive, DSO (Kent Ridge) Building, Level 4, Singapore, 117510, Republic of Singapore
- Department of Orthopaedic Surgery, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block 11, Singapore, 119288, Republic of Singapore
| | - Jongyoon Han
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 50 Vassar St, Cambridge, MA, 02139, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Lisa Tucker-Kellogg
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Cancer and Stem Cell Biology and Centre for Computational Biology, Duke-NUS Medical School, 8 College Rd, Singapore, 169857, Republic of Singapore.
| | - Laurie A Boyer
- Critical Analytics for Manufacturing Personalised-medicine (CAMP) Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 Create Way, Enterprise Wing, #04-13/14, Singapore, 138602, Republic of Singapore.
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA.
| |
Collapse
|
3
|
Jain L, Jardim CA, Yulo R, Bolam SM, Monk AP, Munro JT, Pitto R, Tamatea J, Dalbeth N, Poulsen RC. Phenotype and energy metabolism differ between osteoarthritic chondrocytes from male compared to female patients: Implications for sexual dimorphism in osteoarthritis development? Osteoarthritis Cartilage 2024; 32:1084-1096. [PMID: 37935325 DOI: 10.1016/j.joca.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/28/2023] [Accepted: 09/15/2023] [Indexed: 11/09/2023]
Abstract
OBJECTIVES The prevalence and severity of knee osteoarthritis (OA) are greater in females than males. The purpose of this study was to determine whether there is an underlying difference in the biology of OA chondrocytes between males and females. METHODS Chondrocytes were obtained following knee arthroplasty from male and female patients with primary OA. Phenotype marker expression, glucose and fat consumption, and rates of glycolysis and oxidative phosphorylation were compared between females and males. RNAi was used to determine the consequences of differential expression of Sry-box transcription factor 9 (SOX9) and PGC1α between males and females. RESULTS OA chondrocytes from male donors showed elevated ribonucleic acid (RNA) and protein levels of SOX9, elevated COL2A1 protein synthesis, higher glucose consumption, and higher usage of glycolysis compared to females. OA chondrocytes from females had higher PGC1α protein levels, higher fat consumption, and higher oxidative energy metabolism than males. Knockdown of SOX9 reduced expression of COL2A1 to a greater extent in male OA chondrocytes than females whereas knockdown of PGC1α reduced COL2A1 expression in females but not males. Expression of ACAN and the glycolytic enzyme PGK1 was also reduced in males but not females following SOX9 knockdown. CONCLUSIONS OA chondrocyte phenotype and energy metabolism differ between males and females. Our results indicate transcriptional control of COL2A1 differs between the two. Differences in chondrocyte biology between males and females imply the underlying mechanisms involved in OA may also differ, highlighting the need to consider sex and gender when investigating pathogenesis and potential treatments for OA.
Collapse
Affiliation(s)
- Lekha Jain
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
| | - Caitlin A Jardim
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
| | - Richard Yulo
- Biomedical Imaging Research Unit, University of Auckland, Auckland, New Zealand.
| | - Scott M Bolam
- Department of Surgery, University of Auckland, Auckland, New Zealand; Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - A Paul Monk
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand.
| | - Jacob T Munro
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - Rocco Pitto
- Department of Surgery, University of Auckland, Auckland, New Zealand.
| | - Jade Tamatea
- Te Kupenga Hauora Māori, University of Auckland, Auckland, New Zealand.
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand.
| | - Raewyn C Poulsen
- Department of Pharmacology and Clinical Pharmacology, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
4
|
Ali A, Jori C, Kanika, Kumar A, Vyawahare A, Kumar J, Kumar B, Ahmad A, Fareed M, Ali N, Navik U, Khan R. A bioactive and biodegradable vitamin C stearate-based injectable hydrogel alleviates experimental inflammatory arthritis. Biomater Sci 2024; 12:3389-3400. [PMID: 38804911 DOI: 10.1039/d4bm00243a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune inflammatory joint disorder affecting nearly 1% of the global population. In RA, synovial joints are infiltrated by inflammatory mediators and enzymes, leading to articular cartilage deterioration, joint damage, and bone erosion. Herein, the 9-aminoacridine-6-O-stearoyl-L-ascorbic acid hydrogel (9AA-SAA hydrogel) was formulated by the heat-cool method and further characterized for surface charge, surface morphology, rheology, and cytocompatibility. Furthermore, we evaluated the therapeutic efficacy of the 9AA-SAA hydrogel, an enzyme-responsive drug delivery system with on-and-off switching capabilities based on disease severity against collagen-induced experimental arthritis in Wistar rats. The anti-inflammatory action of the US FDA-approved drug 9-aminoacridine (9AA) was revealed which acted through nuclear receptor subfamily 4 group A member 1 (NR4A1), an anti-inflammatory orphan nuclear receptor that inhibits nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB). Furthermore, we have explored the role of ascorbic acid, an active moiety of 6-O-stearoyl-L-ascorbic acid (SAA), in promoting the production of collagen production through ten-eleven translocation-2 (TET2) upregulation. Targeting through NR4A1 and TET2 could be the probable mechanism for the treatment of experimental arthritis. The combination of 9AA and ascorbic acid demonstrated enhanced therapeutic efficacy in the 9AA-SAA hydrogel, significantly reducing the severity of experimental arthritis. This approach, in contrast to existing treatments with limited effectiveness, presents a promising and more effective strategy for RA treatment by mitigating inflammation in experimental arthritis.
Collapse
Affiliation(s)
- Aneesh Ali
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Chandrashekhar Jori
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Kanika
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Ajay Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Akshay Vyawahare
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Jattin Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Bhuvnesh Kumar
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| | - Anas Ahmad
- Julia McFarlane Diabetes Research Centre (JMDRC), Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Hotchkiss Brain Institute, Cumming School of Medicine, Foothills Medical Centre, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Mohammad Fareed
- Environmental Health and Clinical Epidemiology Laboratory, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Nemat Ali
- Department of Pharmacology & Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Umashanker Navik
- Department of Pharmacology, Central University of Punjab, Ghudda, Bathinda, 151401, Punjab, India
| | - Rehan Khan
- Chemical Biology Unit, Institute of Nano Science and Technology (INST), Knowledge City, Sector-81, Mohali-140306, Punjab, India.
| |
Collapse
|
5
|
Chen Z, Zhang S, Duan P, Yin Z, Dong S, Pang R, Tan H. Intra-articular injection of ascorbic acid enhances microfracture-mediated cartilage repair. Sci Rep 2024; 14:3811. [PMID: 38361039 PMCID: PMC10869716 DOI: 10.1038/s41598-024-54514-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/13/2024] [Indexed: 02/17/2024] Open
Abstract
Previous studies have confirmed that ascorbic acid (AA) can promote cartilage repair and improve cartilage differentiation in bone marrow mesenchymal stem cells. However, the use of microfracture (MFX) combined with AA to repair cartilage damage has not been studied. This study established a rabbit animal model and treated cartilage injury with different concentrations of AA combined with MFX. Macroscopic observations, histological analysis, immunohistochemical analysis and reverse transcription quantitative polymerase chain reaction analysis of TGF-β, AKT/Nrf2, and VEGF mRNA expression were performed. The results showed that intra-articular injection of AA had a positive effect on cartilage repair mediated by microfractures. Moreover, 10 mg/ml AA was the most effective at promoting cartilage repair mediated by microfractures. Intra-articular injection of AA promoted the synthesis of type II collagen and the formation of glycosaminoglycans by downregulating the mRNA expression of TGF-β and VEGF. In summary, this study confirmed that AA could promote cartilage repair after MFX surgery.
Collapse
Affiliation(s)
- Zhian Chen
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin, China
| | - Peiya Duan
- Neurology Department, Longling County People's Hospital, Baoshan City, Yunnan Province, China
| | - Zhengbo Yin
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Shuangbin Dong
- Graduate School, Kunming Medical University, Kunming City, Yunnan Province, China
| | - Rongqing Pang
- Basic Medical Laboratory, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| | - Hongbo Tan
- Department of Orthopaedics, People's Liberation Army Joint Logistic Support Force 920th Hospital, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Zhang H, Wang M, Wu R, Guo J, Sun A, Li Z, Ye R, Xu G, Cheng Y. From materials to clinical use: advances in 3D-printed scaffolds for cartilage tissue engineering. Phys Chem Chem Phys 2023; 25:24244-24263. [PMID: 37698006 DOI: 10.1039/d3cp00921a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Osteoarthritis caused by articular cartilage defects is a particularly common orthopedic disease that can involve the entire joint, causing great pain to its sufferers. A global patient population of approximately 250 million people has an increasing demand for new therapies with excellent results, and tissue engineering scaffolds have been proposed as a potential strategy for the repair and reconstruction of cartilage defects. The precise control and high flexibility of 3D printing provide a platform for subversive innovation. In this perspective, cartilage tissue engineering (CTE) scaffolds manufactured using different biomaterials are summarized from the perspective of 3D printing strategies, the bionic structure strategies and special functional designs are classified and discussed, and the advantages and limitations of these CTE scaffold preparation strategies are analyzed in detail. Finally, the application prospect and challenges of 3D printed CTE scaffolds are discussed, providing enlightening insights for their current research.
Collapse
Affiliation(s)
- Hewen Zhang
- School of the Faculty of Mechanical Engineering and Mechanic, Ningbo University, Ningbo, Zhejiang Province, 315211, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Meng Wang
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Rui Wu
- Department of Orthopedics, Ningbo First Hospital Longshan Hospital Medical and Health Group, Ningbo 315201, P. R. China
| | - Jianjun Guo
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Aihua Sun
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Zhixiang Li
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Ruqing Ye
- Department of Joint Surgery, The Affiliated Hospital of Medical School of Ningbo University, Ningbo, 315020, China.
| | - Gaojie Xu
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| | - Yuchuan Cheng
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Zhejiang Key Laboratory of Additive Manufacturing Materials, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences, Ningbo 315201, P. R. China.
| |
Collapse
|
7
|
Thorp H, Kim K, Kondo M, Grainger DW, Okano T. Fabrication of hyaline-like cartilage constructs using mesenchymal stem cell sheets. Sci Rep 2020; 10:20869. [PMID: 33257787 PMCID: PMC7705723 DOI: 10.1038/s41598-020-77842-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/10/2020] [Indexed: 12/21/2022] Open
Abstract
Cell and tissue engineering approaches for articular cartilage regeneration increasingly focus on mesenchymal stem cells (MSCs) as allogeneic cell sources, based on availability and innate chondrogenic potential. Many MSCs exhibit chondrogenic potential as three-dimensional (3D) cultures (i.e. pellets and seeded biomaterial scaffolds) in vitro; however, these constructs present engraftment, biocompatibility, and cell functionality limitations in vivo. Cell sheet technology maintains cell functionality as scaffold-free constructs while enabling direct cell transplantation from in vitro culture to targeted sites in vivo. The present study aims to develop transplantable hyaline-like cartilage constructs by stimulating MSC chondrogenic differentiation as cell sheets. To achieve this goal, 3D MSC sheets are prepared, exploiting spontaneous post-detachment cell sheet contraction, and chondrogenically induced. Results support 3D MSC sheets' chondrogenic differentiation to hyaline cartilage in vitro via post-contraction cytoskeletal reorganization and structural transformations. These 3D cell sheets' initial thickness and cellular densities may also modulate MSC-derived chondrocyte hypertrophy in vitro. Furthermore, chondrogenically differentiated cell sheets adhere directly to cartilage surfaces via retention of adhesion molecules while maintaining the cell sheets' characteristics. Together, these data support the utility of cell sheet technology for fabricating scaffold-free, hyaline-like cartilage constructs from MSCs for future transplantable articular cartilage regeneration therapies.
Collapse
Affiliation(s)
- Hallie Thorp
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kyungsook Kim
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
| | - Makoto Kondo
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
| | - David W Grainger
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Teruo Okano
- Department of Pharmaceutics and Pharmaceutical Chemistry, Cell Sheet Tissue Engineering Center (CSTEC), University of Utah, 30 South 2000 East, Salt Lake City, UT, 84112, USA.
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women's Medical University, Tokyo, Japan.
| |
Collapse
|
8
|
Zhu Y, Thakore AD, Farry JM, Jung J, Anilkumar S, Wang H, Imbrie-Moore AM, Park MH, Tran NA, Woo YPJ. Collagen-Supplemented Incubation Rapidly Augments Mechanical Property of Fibroblast Cell Sheets. Tissue Eng Part A 2020; 27:328-335. [PMID: 32703108 DOI: 10.1089/ten.tea.2020.0128] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Cell sheet technology using UpCell™ (Thermo Fisher Scientific, Roskilde, Denmark) plates is a modern tool that enables the rapid creation of single-layered cells without using extracellular matrix (ECM) enzymatic digestion. Although this technique has the advantage of maintaining a sheet of cells without needing artificial scaffolds, these cell sheets remain extremely fragile. Collagen, the most abundant ECM component, is an attractive candidate for modulating tissue mechanical properties given its tunable property. In this study, we demonstrated rapid mechanical property augmentation of human dermal fibroblast cell sheets after incubation with bovine type I collagen for 24 h on UpCell plates. We showed that treatment with collagen resulted in increased collagen I incorporation within the cell sheet without affecting cell morphology, cell type, or cell sheet quality. Atomic force microscopy measurements for controls, and cell sheets that received 50 and 100 μg/mL collagen I treatments revealed an average Young's modulus of their respective intercellular regions: 6.6 ± 1.0, 14.4 ± 6.6, and 19.8 ± 3.8 kPa during the loading condition, and 10.3 ± 4.7, 11.7 ± 2.2, and 18.1 ± 3.4 kPa during the unloading condition. This methodology of rapid mechanical property augmentation of a cell sheet has a potential impact on cell sheet technology by improving the ease of construct manipulation, enabling new translational tissue engineering applications.
Collapse
Affiliation(s)
- Yuanjia Zhu
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Akshara D Thakore
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Justin M Farry
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Jinsuh Jung
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Shreya Anilkumar
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Annabel M Imbrie-Moore
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Matthew H Park
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA.,Department of Mechanical Engineering, Stanford University, Stanford, California, USA
| | - Nicholas A Tran
- Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| | - Yi-Ping Joseph Woo
- Department of Bioengineering, Stanford University, Stanford, California, USA.,Department of Cardiothoracic Surgery, and Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Li T, Liu B, Chen K, Lou Y, Jiang Y, Zhang D. Small molecule compounds promote the proliferation of chondrocytes and chondrogenic differentiation of stem cells in cartilage tissue engineering. Biomed Pharmacother 2020; 131:110652. [PMID: 32942151 DOI: 10.1016/j.biopha.2020.110652] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/15/2020] [Accepted: 08/17/2020] [Indexed: 02/09/2023] Open
Abstract
The application of tissue engineering to generate cartilage is limited because of low proliferative ability and unstable phenotype of chondrocytes. The sources of cartilage seed cells are mainly chondrocytes and stem cells. A variety of methods have been used to obtain large numbers of chondrocytes, including increasing chondrocyte proliferation and stem cell chondrogenic differentiation via cytokines, genes, and proteins. Natural or synthetic small molecule compounds can provide a simple and effective method to promote chondrocyte proliferation, maintain a stable chondrocyte phenotype, and promote stem cell chondrogenic differentiation. Therefore, the study of small molecule compounds is of great importance for cartilage tissue engineering. Herein, we review a series of small molecule compounds and their mechanisms that can promote chondrocyte proliferation, maintain chondrocyte phenotype, or induce stem cell chondrogenesis. The studies in this field represent significant contributions to the research in cartilage tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Tian Li
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Bingzhang Liu
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Kang Chen
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yingyue Lou
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Yuhan Jiang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China
| | - Duo Zhang
- Department of Plastic and Reconstructive Surgery, The First Bethune Hospital of Jilin University, Changchun, Jilin, People's Republic of China.
| |
Collapse
|
10
|
Panahi M, Rahimi B, Rahimi G, Yew Low T, Saraygord-Afshari N, Alizadeh E. Cytoprotective effects of antioxidant supplementation on mesenchymal stem cell therapy. J Cell Physiol 2020; 235:6462-6495. [PMID: 32239727 DOI: 10.1002/jcp.29660] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 02/15/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) are earmarked as perfect candidates for cell therapy and tissue engineering due to their capacity to differentiate into different cell types. However, their potential for application in regenerative medicine declines when the levels of the reactive oxygen and nitrogen species (RONS) increase from the physiological levels, a phenomenon which is at least inevitable in ex vivo cultures and air-exposed damaged tissues. Increased levels of RONS can alter the patterns of osteogenic and adipogenic differentiation and inhibit proliferation, as well. Besides, oxidative stress enhances senescence and cell death, thus lowering the success rates of the MSC engraftment. Hence, in this review, we have selected some representatives of antioxidants and newly emerged nano antioxidants in three main categories, including chemical compounds, biometabolites, and protein precursors/proteins, which are proved to be effective in the treatment of MSCs. We will focus on how antioxidants can be applied to optimize the clinical usage of the MSCs and their associated signaling pathways. We have also reviewed several paralleled properties of some antioxidants and nano antioxidants which can be simultaneously used in real-time imaging, scaffolding techniques, and other applications in addition to their primary antioxidative function.
Collapse
Affiliation(s)
- Mohammad Panahi
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahareh Rahimi
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Golbarg Rahimi
- Department of Cellular and Molecular Biology, University of Esfahan, Esfahan, Iran
| | - Teck Yew Low
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Neda Saraygord-Afshari
- Department of Medical Biotechnology, Faculty of Allied Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Effat Alizadeh
- Drug Applied Research Center and Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
11
|
Gemalmaz HC, Sarıyılmaz K, Ozkunt O, Gurgen SG, Silay S. Role of a combination dietary supplement containing mucopolysaccharides, vitamin C, and collagen on tendon healing in rats. ACTA ORTHOPAEDICA ET TRAUMATOLOGICA TURCICA 2018; 52:452-458. [PMID: 30245052 PMCID: PMC6318503 DOI: 10.1016/j.aott.2018.06.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 05/14/2018] [Accepted: 06/27/2018] [Indexed: 11/24/2022]
Abstract
Objective The aim of this study was to investigate the effect of mucopolysaccharide, vitamin C, and collagen supplementation on the healing of Achilles tendon in rats. Methods Sixteen rats were separated into 2 groups. Both Achilles tendons of all rats were transected 5 mm above the insertion and repaired using a Kessler suture. After the surgical repair, the study group received the daily recommended amount of the supplement by gastric gavage, while the control group received a placebo. At the end of the third week, the animals were sacrificed. The biomechanical properties of the groups were compared with ultimate tensile strength and stiffness tests. The biological properties of the 2 groups were assessed with a histomorphometric comparison to determine the amount of collagen type I (COL1), proliferating cell nuclear antigen (PCNA), and transforming growth factor β1 (TGF-β1) expression in 3 different tissue subgroups (collagen matrix, tenocytes, and endotenon fibroblasts). Results Analysis of histomorphometric results revealed that the rats receiving dietary supplements demonstrated a significant increase in PCNA (mean value of 86 in the control group and 168.85 in the trial group; p < 0.05) and TGF-β1 (mean value of 87.57 in the control group and 161.85 in the trial group; p < 0.05) in the endotenon fibroblasts of the repair site. However, there was no difference between the groups in PCNA or TGF-β1 when the collagen matrix and the tenocytes of the repair site were examined. Furthermore, no significant difference could be found between groups in COL1 in any of the 3 tissue subgroups (collagen matrix, tenocytes, and endotenon fibroblasts). The statistical analysis also indicated that the rats receiving supplements did not demonstrate a significant increase in the ultimate tendon tensile strength or stiffness. Conclusion The results of this study revealed no advantage to the oral administration of the trial supplement in collagen synthesis or biomechanical properties in rats after 3 weeks using the presented study design. However, the increased expression of PCNA and TGFβ1 seen in the endotenon fibroblasts of the repair site might play a role in the continuum of tendon healing.
Collapse
Affiliation(s)
| | | | - Okan Ozkunt
- Acıbadem University School of Medicine, Istanbul, Turkey.
| | - Seren Gulsen Gurgen
- Celal Bayar University School of Vocational Health Services, Department of Histology and Embryology, Manisa, Turkey.
| | - Sena Silay
- Acıbadem University School of Medicine, Istanbul, Turkey.
| |
Collapse
|
12
|
Zhi Z, Xing F, Chen L, Li L, Long Y, Xiang Z. [Application of cell sheet technology in bone and cartilage tissue engineering]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2018; 32:237-241. [PMID: 29806418 DOI: 10.7507/1002-1892.201707027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Objective To review the progress of cell sheet technology and its application in bone and cartilage engineering. Methods The recent literature concerning the cell sheet technology used in treatment of bone and cartilage defects was extensively reviewed and summarized. Results Cell sheet built through many different ways can protect extracellular matrix from proteolytic enzymes. As a three-dimensional structure, cell sheet can repair bone and cartilige defects via folding, wrapping scaffold, or be created by the layering of individual cell sheets. Conclusion The cell sheet technology would have a very broad prospects in bone and cartilage tissue engineering in future.
Collapse
Affiliation(s)
- Zhenya Zhi
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Fei Xing
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Long Chen
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Lang Li
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Ye Long
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041, P.R.China
| | - Zhou Xiang
- Department of Orthopedics, West China Hospital, Sichuan University, Chengdu Sichuan, 610041,
| |
Collapse
|
13
|
Sato K, Mera H, Wakitani S, Takagi M. Effect of epigallocatechin-3-gallate on the increase in type II collagen accumulation in cartilage-like MSC sheets. Biosci Biotechnol Biochem 2017; 81:1241-1245. [PMID: 28485205 DOI: 10.1080/09168451.2017.1282809] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
With the aim to increase type II collagen content in the scaffold-free cartilage-like cell sheet using human bone marrow mesenchymal stem cells, we examined the effect of epigallocatechin-3-gallate (EGCG) addition to the chondrogenic medium for the cell sheet culture. The addition of EGCG (10 μM) increased the content of type II collagen 2-fold, while the addition did not markedly change the expression level of the genes encoding type II collagen and Sox 9. The reactive oxygen species level in the cells in cell sheets was thought to be too low to suppress the accumulation of type II collagen. On the other hand, the addition of EGCG markedly decreased both the matrix metalloproteinase-13 concentration in the supernatant of cell sheet culture and the type II collagen degradation activity in that supernatant. Taken together, EGCG may enhance the accumulation of type II collagen by suppressing type II collagen degradation.
Collapse
Affiliation(s)
- Keigo Sato
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| | - Hisashi Mera
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan.,c Foundation for Biomedical Research and Innovation, International Medical Device Alliance , Kobe , Japan
| | - Shigeyuki Wakitani
- b School of Health and Sports Sciences , Mukogawa Women's University , Nishinomiya , Japan
| | - Mutsumi Takagi
- a Division of Biotechnology and Macromolecular Chemistry , Graduate School of Engineering, Hokkaido University , Sapporo , Japan
| |
Collapse
|
14
|
Preoperative vitamin C supplementation improves colorectal anastomotic healing and biochemical parameters in malnourished rats. Int J Colorectal Dis 2016; 31:1759-1766. [PMID: 27614446 DOI: 10.1007/s00384-016-2647-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2016] [Indexed: 02/06/2023]
Abstract
PURPOSES The objective of this study was to evaluate the effect of supplementation with vitamin C on intestinal anastomosis healing in malnourished rats. METHODS Male Wistar rats were divided into three groups: (1) sham, well-nourished rats that received vehicle; (2) FR+Veh, rats that were subjected to food restriction and received vehicle; and (3) FR+VC, rats that were subjected to food restriction and received vitamin C. Four days before surgery, the animals received vitamin C (100 mg/kg/day) via gavage and underwent colon resection with anastomosis in a single plane. The survival rate of rats was monitored until day 7 after surgery. Regarding anastomosis tissues, we examined intra-abdominal adhesion index, hydroxyproline content, collagen density, inflammatory parameters, and oxidative damage to proteins and lipids. RESULTS Malnutrition decreases body weight and increases mortality; the survival rate was 90 % in group 1, 60 % in group 2, and 80 % in group 3. Vitamin C was able to increase hydroxyproline concentration and density of collagen and decrease the intra-abdominal adhesion index, as well as the infiltration of neutrophils and oxidative damage to proteins in malnourished rats compared to group treated with vehicle. CONCLUSIONS Preoperative vitamin C supplementation can improve the intestinal anastomosis healing, biochemical alterations, and prolong survival in rats subjected to food restriction.
Collapse
|
15
|
Abstract
Mesenchymal stem cells (MSCs) have great potential as a source of cells for cell-based therapy because of their ability for self-renewal and differentiation into functional cells. Moreover, matrix metalloproteinases (MMPs) have a critical role in the differentiation of MSCs into different lineages. MSCs also interact with exogenous MMPs at their surface, and regulate the pericellular localization of MMP activities. The fate of MSCs is regulated by specific MMPs associated with a key cell lineage. Recent reports suggest the integration of MMPs in the differentiation, angiogenesis, proliferation, and migration of MSCs. These interactions are not fully understood and warrant further investigation, especially for their application as therapeutic tools to treat different diseases. Therefore, overexpression of a single MMP or tissue-specific inhibitor of metalloproteinase in MSCs may promote transdifferentiation into a specific cell lineage, which can be used for the treatment of some diseases. In this review, we critically discuss the identification of various MMPs and the signaling pathways that affect the differentiation, migration, angiogenesis, and proliferation of MSCs.
Collapse
Affiliation(s)
- Sami G Almalki
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Devendra K Agrawal
- Department of Clinical and Translational Science, Creighton University School of Medicine, CRISS II, Room 510, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|