1
|
Vincent EP, Perry BW, Kelley JL, Robbins CT, Jansen HT. Circadian gene transcription plays a role in cellular metabolism in hibernating brown bears, Ursus arctos. J Comp Physiol B 2023; 193:699-713. [PMID: 37819371 DOI: 10.1007/s00360-023-01513-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/28/2023] [Accepted: 09/05/2023] [Indexed: 10/13/2023]
Abstract
Hibernation is a highly seasonal physiological adaptation that allows brown bears (Ursus arctos) to survive extended periods of low food availability. Similarly, daily or circadian rhythms conserve energy by coordinating body processes to optimally match the environmental light/dark cycle. Brown bears express circadian rhythms in vivo and their cells do in vitro throughout the year, suggesting that these rhythms may play important roles during periods of negative energy balance. Here, we use time-series analysis of RNA sequencing data and timed measurements of ATP production in adipose-derived fibroblasts from active and hibernation seasons under two temperature conditions to confirm that rhythmicity was present. Culture temperature matching that of hibernation body temperature (34 °C) resulted in a delay of daily peak ATP production in comparison with active season body temperatures (37 °C). The timing of peaks of mitochondrial gene transcription was altered as were the amplitudes of transcripts coding for enzymes of the electron transport chain. Additionally, we observed changes in mean expression and timing of key metabolic genes such as SIRT1 and AMPK which are linked to the circadian system and energy balance. The amplitudes of several circadian gene transcripts were also reduced. These results reveal a link between energy conservation and a functioning circadian system in hibernation.
Collapse
Affiliation(s)
- Ellery P Vincent
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Blair W Perry
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
| | - Joanna L Kelley
- Ecology and Evolutionary Biology, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Charles T Robbins
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA
- School of the Environment, Washington State University, Pullman, WA, 99163, USA
| | - Heiko T Jansen
- School of Biological Sciences, Washington State University, Pullman, WA, 99163, USA.
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA, 99163, USA.
| |
Collapse
|
2
|
Saxton MW, Perry BW, Evans Hutzenbiler BD, Trojahn S, Gee A, Brown AP, Merrihew GE, Park J, Cornejo OE, MacCoss MJ, Robbins CT, Jansen HT, Kelley JL. Serum plays an important role in reprogramming the seasonal transcriptional profile of brown bear adipocytes. iScience 2022; 25:105084. [PMID: 36317158 PMCID: PMC9617460 DOI: 10.1016/j.isci.2022.105084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/30/2022] [Accepted: 09/01/2022] [Indexed: 11/19/2022] Open
Abstract
Understanding how metabolic reprogramming happens in cells will aid the progress in the treatment of a variety of metabolic disorders. Brown bears undergo seasonal shifts in insulin sensitivity, including reversible insulin resistance in hibernation. We performed RNA-sequencing on brown bear adipocytes and proteomics on serum to identify changes possibly responsible for reversible insulin resistance. We observed dramatic transcriptional changes, which depended on both the cell and serum season of origin. Despite large changes in adipocyte gene expression, only changes in eight circulating proteins were identified as related to the seasonal shifts in insulin sensitivity, including some that have not previously been associated with glucose homeostasis. The identified serum proteins may be sufficient for shifting hibernation adipocytes to an active-like state.
Collapse
Affiliation(s)
- Michael W. Saxton
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Blair W. Perry
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Shawn Trojahn
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Alexia Gee
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Anthony P. Brown
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | | | - Jea Park
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Omar E. Cornejo
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| | - Michael J. MacCoss
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Charles T. Robbins
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
- School of the Environment, Washington State University, Pullman, WA 99163, USA
| | - Heiko T. Jansen
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99163, USA
| | - Joanna L. Kelley
- School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
| |
Collapse
|
3
|
Hogan HRH, Hutzenbiler BDE, Robbins CT, Jansen HT. Changing lanes: seasonal differences in cellular metabolism of adipocytes in grizzly bears (Ursus arctos horribilis). J Comp Physiol B 2022; 192:397-410. [PMID: 35024905 DOI: 10.1007/s00360-021-01428-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/07/2021] [Accepted: 12/20/2021] [Indexed: 12/21/2022]
Abstract
Obesity is among the most prevalent of health conditions in humans leading to a multitude of metabolic pathologies such as type 2 diabetes and hyperglycemia. However, there are many wild animals that have large seasonal cycles of fat accumulation and loss that do not result in the health consequences observed in obese humans. One example is the grizzly bear (Ursus arctos horribilis) that can have body fat content > 40% that is then used as the energy source for hibernation. Previous in vitro studies found that hibernation season adipocytes exhibit insulin resistance and increased lipolysis. Yet, other aspects of cellular metabolism were not addressed, leaving this in vitro model incomplete. Thus, the current studies were performed to determine if the cellular energetic phenotype-measured via metabolic flux-of hibernating bears was retained in cultured adipocytes and to what extent that was due to serum or intrinsic cellular factors. Extracellular acidification rate and oxygen consumption rate were used to calculate proton efflux rate and total ATP defined as both ATP from glycolysis and from mitochondrial respiration. Hibernation adipocytes treated with hibernation serum produced less ATP and exhibited lower maximal respiration and glycolysis rates than active season adipocytes. These effects were reversed with serum from the opposite season. Insulin had little influence on total ATP production and lipolysis in both hibernation and active serum-treated adipocytes. Together, these results suggest that the metabolic suppression occurring in hibernation adipocytes are downstream of insulin signaling and likely due to a combined reduction in mitochondria number and/or function and glycolytic processes. Future elucidation of the serum components and the cellular mechanisms that enable alterations in mitochondrial function could provide a novel avenue for the development of treatments for human metabolic diseases.
Collapse
Affiliation(s)
- Hannah R Hapner Hogan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.
| | - Brandon D E Hutzenbiler
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA, 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Heiko T Jansen
- Department Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
4
|
Jansen HT, Evans Hutzenbiler B, Hapner HR, McPhee ML, Carnahan AM, Kelley JL, Saxton MW, Robbins CT. Can offsetting the energetic cost of hibernation restore an active season phenotype in grizzly bears (Ursus arctos horribilis)? J Exp Biol 2021; 224:269178. [PMID: 34137891 DOI: 10.1242/jeb.242560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/12/2021] [Indexed: 01/14/2023]
Abstract
Hibernation is characterized by depression of many physiological processes. To determine if this state is reversible in a non-food caching species, we fed hibernating grizzly bears (Ursus arctos horribilis) dextrose for 10 days to replace 53% or 100% of the estimated minimum daily energetic cost of hibernation. Feeding caused serum concentrations of glycerol and ketones (β-hydroxybutyrate) to return to active season levels irrespective of the amount of glucose fed. By contrast, free fatty acids (FFAs) and indices of metabolic rate, such as general activity, heart rate, strength of heart rate circadian rhythm, and insulin sensitivity were restored to approximately 50% of active season levels. Body temperature was unaffected by feeding. To determine the contribution of adipose to the metabolic effects observed after glucose feeding, we cultured bear adipocytes collected at the beginning and end of the feeding and performed metabolic flux analysis. We found a ∼33% increase in energy metabolism after feeding. Moreover, basal metabolism before feeding was 40% lower in hibernation cells compared with fed cells or active cells cultured at 37°C, thereby confirming the temperature independence of metabolic rate. The partial depression of circulating FFAs with feeding likely explains the incomplete restoration of insulin sensitivity and other metabolic parameters in hibernating bears. Further depression of metabolic function is likely to be an active process. Together, the results provide a highly controlled model to examine the relationship between nutrient availability and metabolism on the hibernation phenotype in bears.
Collapse
Affiliation(s)
- Heiko T Jansen
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Brandon Evans Hutzenbiler
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Hannah R Hapner
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Madeline L McPhee
- Dept. Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Anthony M Carnahan
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Joanna L Kelley
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Michael W Saxton
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA
| | - Charles T Robbins
- School of Biological Sciences, College of Arts and Sciences, Washington State University, Pullman, WA 99164, USA.,School of the Environment, College of Agricultural, Human and Natural Resource Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
5
|
Nasoori A, Okamatsu-Ogura Y, Shimozuru M, Sashika M, Tsubota T. Hibernating bear serum hinders osteoclastogenesis in-vitro. PLoS One 2020; 15:e0238132. [PMID: 32853221 PMCID: PMC7451522 DOI: 10.1371/journal.pone.0238132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Bears do not suffer from osteoporosis during hibernation, which is associated with long-term inactivity, lack of food intake, and cold exposure. However, the mechanisms involved in bone loss prevention have scarcely been elucidated in bears. We investigated the effect of serum from hibernating Japanese black bears (Ursus thibetanus japonicus) on differentiation of peripheral blood mononuclear cells (PBMCs) to osteoclasts (OCs). PBMCs collected from 3 bears were separately cultured with 10% serum of 4 active and 4 hibernating bears (each individual serum type was assessed separately by a bear PBMCs), and differentiation were induced by treatment with macrophage colony stimulating factor (M-CSF) and receptor activator of NF-kB ligand (RANKL). PBMCs that were cultured with the active bear serum containing medium (ABSM) differentiated to multi-nucleated OCs, and were positive for TRAP stain. However, cells supplemented with hibernating bear serum containing medium (HBSM) failed to form OCs, and showed significantly lower TRAP stain (p < 0.001). On the other hand, HBSM induced proliferation of adipose derived mesenchymal stem cells (ADSCs) similarly to ABSM (p > 0.05), indicating no difference on cell growth. It was revealed that osteoclastogenesis of PBMCs is hindered by HBSM, implying an underlying mechanism for the suppressed bone resorption during hibernation in bears. In addition, this study for the first time showed the formation of bears’ OCs in-vitro.
Collapse
Affiliation(s)
- Alireza Nasoori
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yuko Okamatsu-Ogura
- Laboratory of Biochemistry, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Michito Shimozuru
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Mariko Sashika
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Toshio Tsubota
- Laboratory of Wildlife Biology and Medicine, Department of Environmental Veterinary Science, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
6
|
Lam EK, Allen KN, Torres-Velarde JM, Vázquez-Medina JP. Functional Studies with Primary Cells Provide a System for Genome-to-Phenome Investigations in Marine Mammals. Integr Comp Biol 2020; 60:348-360. [PMID: 32516367 DOI: 10.1093/icb/icaa065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Marine mammals exhibit some of the most dramatic physiological adaptations in their clade and offer unparalleled insights into the mechanisms driving convergent evolution on relatively short time scales. Some of these adaptations, such as extreme tolerance to hypoxia and prolonged food deprivation, are uncommon among most terrestrial mammals and challenge established metabolic principles of supply and demand balance. Non-targeted omics studies are starting to uncover the genetic foundations of such adaptations, but tools for testing functional significance in these animals are currently lacking. Cellular modeling with primary cells represents a powerful approach for elucidating the molecular etiology of physiological adaptation, a critical step in accelerating genome-to-phenome studies in organisms in which transgenesis is impossible (e.g., large-bodied, long-lived, fully aquatic, federally protected species). Gene perturbation studies in primary cells can directly evaluate whether specific mutations, gene loss, or duplication confer functional advantages such as hypoxia or stress tolerance in marine mammals. Here, we summarize how genetic and pharmacological manipulation approaches in primary cells have advanced mechanistic investigations in other non-traditional mammalian species, and highlight the need for such investigations in marine mammals. We also provide key considerations for isolating, culturing, and conducting experiments with marine mammal cells under conditions that mimic in vivo states. We propose that primary cell culture is a critical tool for conducting functional mechanistic studies (e.g., gene knockdown, over-expression, or editing) that can provide the missing link between genome- and organismal-level understanding of physiological adaptations in marine mammals.
Collapse
Affiliation(s)
- Emily K Lam
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kaitlin N Allen
- Department of Integrative Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | |
Collapse
|
7
|
Life in the fat lane: seasonal regulation of insulin sensitivity, food intake, and adipose biology in brown bears. J Comp Physiol B 2016; 187:649-676. [PMID: 27987017 DOI: 10.1007/s00360-016-1050-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 11/06/2016] [Accepted: 11/23/2016] [Indexed: 12/14/2022]
Abstract
Grizzly bears (Ursus arctos horribilis) have evolved remarkable metabolic adaptations including enormous fat accumulation during the active season followed by fasting during hibernation. However, these fluctuations in body mass do not cause the same harmful effects associated with obesity in humans. To better understand these seasonal transitions, we performed insulin and glucose tolerance tests in captive grizzly bears, characterized the annual profiles of circulating adipokines, and tested the anorectic effects of centrally administered leptin at different times of the year. We also used bear gluteal adipocyte cultures to test insulin and beta-adrenergic sensitivity in vitro. Bears were insulin resistant during hibernation but were sensitive during the spring and fall active periods. Hibernating bears remained euglycemic, possibly due to hyperinsulinemia and hyperglucagonemia. Adipokine concentrations were relatively low throughout the active season but peaked in mid-October prior to hibernation when fat content was greatest. Serum glycerol was highest during hibernation, indicating ongoing lipolysis. Centrally administered leptin reduced food intake in October, but not in August, revealing seasonal variation in the brain's sensitivity to its anorectic effects. This was supported by strong phosphorylated signal transducer and activator of transcription 3 labeling within the hypothalamus of hibernating bears; labeling virtually disappeared in active bears. Adipocytes collected during hibernation were insulin resistant when cultured with hibernation serum but became sensitive when cultured with active season serum. Heat treatment of active serum blocked much of this action. Clarifying the cellular mechanisms responsible for the physiology of hibernating bears may inform new treatments for metabolic disorders.
Collapse
|