1
|
Wang JJ, Zheng Y, Li YL, Xiao Y, Ren YY, Tian YQ. Emerging role of mesenchymal stem cell-derived exosomes in the repair of acute kidney injury. World J Stem Cells 2025; 17:103360. [PMID: 40160687 PMCID: PMC11947899 DOI: 10.4252/wjsc.v17.i3.103360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/26/2024] [Accepted: 02/13/2025] [Indexed: 03/21/2025] Open
Abstract
Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid deterioration in kidney function and has a significant impact on patient health and survival. Mesenchymal stem cells (MSCs) have the potential to enhance renal function by suppressing the expression of cell cycle inhibitors and reducing the expression of senescence markers and microRNAs via paracrine and endocrine mechanisms. MSC-derived exosomes can alleviate AKI symptoms by regulating DNA damage, apoptosis, and other related signaling pathways through the delivery of proteins, microRNAs, long-chain noncoding RNAs, and circular RNAs. This technique is both safe and effective. MSC-derived exosomes may have great application prospects in the treatment of AKI. Understanding the underlying mechanisms will foster the development of new and promising therapeutic strategies against AKI. This review focused on recent advancements in the role of MSCs in AKI repair as well as the mechanisms underlying the role of MSCs and their secreted exosomes. It is anticipated that novel and profound insights into the functionality of MSCs and their derived exosomes will emerge.
Collapse
Affiliation(s)
- Juan-Juan Wang
- Clinical Laboratory, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yu Zheng
- Clinical Laboratory, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yan-Lin Li
- Clinical Laboratory, The First People's Hospital of Yancheng, Yancheng First Hospital, Affiliated Hospital of Nanjing University Medical School, Yancheng 224000, Jiangsu Province, China
| | - Yin Xiao
- Department of Medical Imaging, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou 221000, Jiangsu Province, China
| | - Yang-Yang Ren
- Clinical Laboratory, Xinyi People's Hospital, Xuzhou 221000, Jiangsu Province, China
| | - Yi-Qing Tian
- Clinical Laboratory, Xuzhou Central Hospital, Xuzhou 221000, Jiangsu Province, China.
| |
Collapse
|
2
|
Ren Z, Qi Y, Sun S, Tao Y, Shi R. Mesenchymal Stem Cell-Derived Exosomes: Hope for Spinal Cord Injury Repair. Stem Cells Dev 2020; 29:1467-1478. [PMID: 33045910 DOI: 10.1089/scd.2020.0133] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Spinal cord injury (SCI) is a devastating medical condition with profound social and economic impacts. Although research is ongoing, current treatment options are limited and do little to restore functionality. However, recent studies suggest that mesenchymal stem cell-derived exosomes (MSC-exosomes) may hold the key to exciting new treatment options for SCI patients. MSCs are self-renewing multipotent stem cells with multi-directional differentiation and can secrete a large number of exosomes (vesicles secreted into the extracellular environment through endocytosis, called MSC-exosomes). These MSC-exosomes play a critical role in repairing SCI through promoting angiogenesis and axonal growth, regulating inflammation and the immune response, inhibiting apoptosis, and maintaining the integrity of the blood-spinal cord barrier. Furthermore, they can be utilized to transport genetic material or drugs to target cells, and their relatively small size makes them able to permeate the blood-brain barrier. In this review, we summarize recent advances in MSC-exosome themed SCI treatments and cell-free therapies to better understand this newly emerging methodology.
Collapse
Affiliation(s)
- Zhihua Ren
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Yao Qi
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Siyuan Sun
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Department of Orthopedics, National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yuanyuan Tao
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA.,Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Yaan, China
| | - Riyi Shi
- Department of Basic Medical Sciences, College of Veterinary Medicine, Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Liu H, Chen W, Zhao B, Quan W, Zhang Y, Zhou Y, Wan Z, Zhang X, Xue G, Li J, Luo S, Wang J, Liu Y, Zhen M, Zhao Y. Autologous bionic tissue for inguinal hernia repair. J Biomed Mater Res A 2020; 108:1351-1368. [PMID: 32090432 DOI: 10.1002/jbm.a.36907] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/14/2020] [Accepted: 02/17/2020] [Indexed: 11/07/2022]
Abstract
The prosthetic mesh, which is widely used in tension-free hernioplasty, often result in avascular stiff fibrotic scar or mesh shrinkage, causing chronic pain and infection. Here, we developed an autologous bionic tissue (ABT), which was composed of autologous bone marrow-derived mesenchymal stem cells (MSCs), poly (lactic-co-glycolic acid) (PLGA) porous scaffolds, and extracellular matrix (ECM) produced by MSCs for inguinal hernioplasty. In ABT, MSCs produced a variety of ECM composites, such as structural proteins (insoluble collagen, elastin) that provided mechanical properties, macromolecules (hyaluronic acid, glycosaminoglycan) as water and cytokines reservoir, and cell-engaging proteins (fibronectin, laminin). The above ECM composites reached the highest level in 21 days. ECM degradation related cytokines (MMP-9 and its inhibitor TIMP-1) reached the highest level on the 14th day. ECM increased the mechanical properties, elasticity, and flexibility of PLGA. Compared with the PLGA, ABT greatly inhibited inflammatory factors and promoted anti-inflammatory factors (p < 0.05), and gradually reduced the M1/M2 ratio in vivo (p < 0.05). After implantation, the thickness of tissue regeneration (p < 0.05), the number of capillaries or mature vessels (p < 0.05), the mechanical properties of ABT (p < 0.05) were greater than PLGA. MSCs and ECM could reduce the inflammation caused by PLGA, and prevent PLGA from earlier degradation and facilitate host cellular infiltration, thus ABT could greatly promote tissue regeneration in hernia repairs.
Collapse
Affiliation(s)
- Hongyi Liu
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Weibin Chen
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Bin Zhao
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Wei Quan
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yinlong Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yuanyuan Zhou
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Zheng Wan
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Xiaohong Zhang
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Gang Xue
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Jietao Li
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Shuting Luo
- School of Medicine, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Jinling Wang
- Emergency, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yun Liu
- Hepatology Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Maochuan Zhen
- Hepatology Surgery, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| | - Yilin Zhao
- Oncology and Vascular Interventional Radiology, Zhongshan Hospital, Xiamen University, Xiamen, Fujian Province, People's Republic of China
| |
Collapse
|
4
|
Gaber T, Schönbeck K, Hoff H, Tran CL, Strehl C, Lang A, Ohrndorf S, Pfeiffenberger M, Röhner E, Matziolis G, Burmester GR, Buttgereit F, Hoff P. CTLA-4 Mediates Inhibitory Function of Mesenchymal Stem/Stromal Cells. Int J Mol Sci 2018; 19:ijms19082312. [PMID: 30087255 PMCID: PMC6121442 DOI: 10.3390/ijms19082312] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 08/01/2018] [Accepted: 08/02/2018] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are stem cells of the connective tissue, possess a plastic phenotype, and are able to differentiate into various tissues. Besides their role in tissue regeneration, MSCs perform additional functions as a modulator or inhibitor of immune responses. Due to their pleiotropic function, MSCs have also gained therapeutic importance for the treatment of autoimmune diseases and for improving fracture healing and cartilage regeneration. However, the therapeutic/immunomodulatory mode of action of MSCs is largely unknown. Here, we describe that MSCs express the inhibitory receptor CTLA-4 (cytotoxic T lymphocyte antigen 4). We show that depending on the environmental conditions, MSCs express different isoforms of CTLA-4 with the secreted isoform (sCTLA-4) being the most abundant under hypoxic conditions. Furthermore, we demonstrate that the immunosuppressive function of MSCs is mediated mainly by the secretion of CTLA-4. These findings open new ways for treatment when tissue regeneration/fracture healing is difficult.
Collapse
Affiliation(s)
- Timo Gaber
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Kerstin Schönbeck
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Holger Hoff
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Cam Loan Tran
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Cindy Strehl
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Annemarie Lang
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Sarah Ohrndorf
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
| | - Moritz Pfeiffenberger
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Eric Röhner
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
| | - Georg Matziolis
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
| | - Gerd-R Burmester
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Frank Buttgereit
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
| | - Paula Hoff
- Department of Rheumatology and Clinical Immunology, Charité⁻Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.
- German Rheumatism Research Centre (DRFZ) Berlin, A Leibniz Institute, 10117 Berlin, Germany.
- Department of Orthopedics, Campus Eisenberg, Jena University Hospital, Klosterlausnitzer Straße 81, 07607 Eisenberg, Germany.
- Endokrinologikum Berlin, 10117 Berlin, Germany.
| |
Collapse
|