1
|
Basak G, Roy N, Dutta AK, Acharya K. Revealing the Taxonomic Profile of a Wild Edible Mushroom From Tribal Cuisine and Its Pharmacological Significance. Biotechnol Appl Biochem 2025. [PMID: 40364457 DOI: 10.1002/bab.2779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/25/2025] [Indexed: 05/15/2025]
Abstract
The historical use of wild mushrooms as food and medicine has been documented in several countries, including India. The Indian macrofungal flora consists of a diverse range of distinct species that have long been valued by various tribal groups for their medicinal and culinary qualities. During the process of documenting indigenous mushroom species, one unique edible Russula sp. was collected from the Pinus-dominated forest of the East Khasi Hills district of Meghalaya. Following a thorough assessment of the morphological traits and molecular phylogenetic analysis, this distinct species has been identified as Russula pseudojaponica, a new record from India. In order to investigate its therapeutic potential, a methanolic fraction was prepared and characterized for myco-chemicals. A substantial quantity of different secondary metabolites like carotenoids, ascorbic acid, and phenolics has been detected. The methanolic fraction also had notable antioxidant activity, displaying strong capabilities in scavenging DPPH and ABTS radicals, possessing high reducing power, and chelating capacity. In addition, the extract demonstrated the capacity to hinder the growth of Listeria monocytogenes, Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli, Salmonella typhi, and Staphylococcus aureus, as seen in the broth microdilution experiment. Furthermore, it induced morphological changes in bacterial cells, which were seen by scanning electron microscopy. Moreover, the extract demonstrated the ability to inhibit the proliferation, clonogenicity, and migratory potential of lung carcinoma cells, suggesting its potential as an anticancer agent. The extract successfully arrested the cell cycle progression in the S phase of cell division. Involvement of the intrinsic mitochondrial pathway of apoptosis was also observed after extract treatment. Hence, based on the findings of this study, this exceptional fungus has the capacity to function as an organic reservoir for the creation of novel medications to counteract illnesses associated with oxidative stress, bacterial ailments, and cancer.
Collapse
Affiliation(s)
- Gouri Basak
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| | - Niranjan Roy
- Molecular and Applied Mycology Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
- Department of Botany, Moridhal College, Dhemaji, Assam, India
| | - Arun Kumar Dutta
- Molecular and Applied Mycology Laboratory, Department of Botany, Gauhati University, Guwahati, Assam, India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Department of Botany, University of Calcutta, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Tang SJ, Shao CX, Yang Y, Ren R, Jin L, Hu D, Wu SL, Lei P, He YL, Xu J. The antitumor effect of mycelia extract of the medicinal macrofungus Inonotus hispidus on HeLa cells via the mitochondrial-mediated pathway. JOURNAL OF ETHNOPHARMACOLOGY 2023; 311:116407. [PMID: 37001769 DOI: 10.1016/j.jep.2023.116407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 03/09/2023] [Accepted: 03/18/2023] [Indexed: 06/19/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Inonotus hispidus (I. hispidus), known as shaggy bracket, has been used extensively in China and some East Asian countries as a traditional medicinal macrofungus to treat difficult diseases, such as diabetes, gout, and arthritis. Modern pharmacological research has shown that I. hispidus has an important application value in antitumor treatment. However, the main anti-cervical cancer activity substances from its mycelia and its mechanisms are still not clear. AIMS OF THE STUDY To enrich the germplasm resources of I. hispidus, to reveal the antitumor activity of the extract from the mycelium of I. hispidus against cervical cancer, and to preliminarily analyze its action mechanism. MATERIALS AND METHODS The SH3 strain was isolated from wild fruiting bodies and identified by morphology and molecular biology. The antitumor active component from the mycelium of I. hispidus was isolated and identified with liquid chromatography-tandem mass spectrometry. The cell viability was assessed by MTT assay. The cell cycle distribution, apoptotic cell detection, and mitochondrial membrane potential were detected by flow cytometer. The expression of apoptosis-related proteins was assessed by Western blotting. The inhibition of tumor growth in vivo was assessed by a mouse xenograft model. RESULTS The SH3 strain was isolated and identified as a new strain of I. hispidus. The antitumor active component containing cyclic peptides from the mycelium of I. hispidus (CCM) was isolated for the first time. In addition, we found that CCM had a strong inhibitory effect on HeLa proliferation in vitro and in vivo. Mechanically, the CCM blocked the cell cycle at the G0/G1 phase, decreased the mitochondrial membrane potential, and eventually promoted apoptosis of HeLa cells through the mitochondria-mediated pathway by upregulating the expression levels of Bax, cytochrome C, cleaved caspase-9, and cleaved caspase-3 and downregulating the expression level of Bcl-2. CONCLUSIONS Our study not only enriches the strain resources of I. hispidus but also confirms that the mycelium of this strain has active components that can inhibit cervical cancer. This is highly significant for the development of active drugs and drug lead molecules for treating cervical cancer.
Collapse
Affiliation(s)
- Shao-Jun Tang
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Chen-Xia Shao
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Yi Yang
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Rui Ren
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Lei Jin
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Dan Hu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Shen-Lian Wu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Pin Lei
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Yue-Lin He
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China
| | - Jun Xu
- Hunan Institute of Microbiology, 81 Xinkaipu Road, Changsha, 410009, China.
| |
Collapse
|
3
|
Khatua S, Paloi S, Acharya K. An untold story of a novel mushroom from tribal cuisine: an ethno-medicinal, taxonomic and pharmacological approach. Food Funct 2021; 12:4679-4695. [PMID: 33928983 DOI: 10.1039/d1fo00533b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
India showcases an array of fascinating and rare mushrooms that grow exclusively in the wilderness of West Bengal. Thus, the state has always been our prime choice to document myco-diversity and associated indigenous knowledge. Fortuitously, a recent expedition gifted us a violet-coloured Russuloid macrofungus, called "Jam Patra", that plays an integral part in the food security of local ethnic groups. However, the species has not received the much-needed attention among city dwellers and remains abandoned, motivating us to carry a thorough investigation. To our surprise, extensive analyses on morphological features and nrITS based phylogenetic estimation pointed the novelty of the taxon, as justified herein. Extending this research, a water-soluble polysaccharide-rich fraction was isolated to determine therapeutic prospects. Chemical characterization revealed that the backbone of the polymers, organized in triple-helical form, predominantly consisted of β-glucan accompanied by a lower extent of galactose, mannose and xylose. Subsequently, the effective antioxidant activity was noted in terms of radical scavenging, reducing power and chelating ability with EC50 of 305-2726 μg ml-1. Further, the macromolecules triggered murine macrophages to proliferate, phagocytose, release NO, produce intracellular ROS and change morphodynamics. A significant alleviation in the expression of TLR-2, TLR-4, NF-κB, COX-2, TNF-α, Iκ-Bα, IFN-γ, IL-10 and iNOS was also observed explaining the definite immune-stimulatory activity and supporting traditional consumption of "Jam Patra" as a health-promoting food. Altogether, the study introduces a species in the world's myco-diversity and tribal food list opening doors of various opportunities in functional food and nature-based drug development arenas, which are currently in trend.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| | | | | |
Collapse
|
4
|
Khatua S, Sen Gupta S, Ghosh M, Tripathi S, Acharya K. Exploration of nutritional, antioxidative, antibacterial and anticancer status of Russula alatoreticula: towards valorization of a traditionally preferred unique myco-food. Journal of Food Science and Technology 2020; 58:2133-2147. [PMID: 33967311 DOI: 10.1007/s13197-020-04723-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/10/2020] [Accepted: 08/13/2020] [Indexed: 12/23/2022]
Abstract
Healthy food trend is becoming popular these days fueling search for ingredients empowered by pharma-nutritional benefits. In contrast, numerous wild-growing mushrooms are traditionally cherished as health promoting gastronomies in India; although credibility of their effects has so far been limited. Hence the present study aimed to unveil a unique tribal cuisine, Russula alatoreticula, with nutritional, chemical and pharmacological relevance. The outcome demonstrated an excellent alimentary composition with carbohydrate and protein as prominent macronutrients in contrast to fat providing oleic acid (36.66%), linoleic acid (16.84%), palmitic acid (16.01%) and stearic acid (15.31%) indicative of profitable nutritive account. Conversely, ethanolic fraction enriched with phenolics (pyrogallol > cinnamic acid) presented effective antioxidant property in terms of radical scavenging, Fe2+ chelating and reducing power with EC50 ranging from 785 to 2500 μg/ml. Remarkable antibacterial activity was also noted against the tested microorganisms (MIC of 72.5-1560 μg/ml) preferentially targeting Gram-positive one. Besides treatment of the preparation rendered Hep3B proliferation as evident by phenotypic changes, cell cycle interference, reactive oxygen species generation, mitochondrial membrane potential reduction, DNA fragmentation, change in Bax/Bcl2 ratio and activation of caspase9 signifying induction of intrinsic mitochondrial pathway. Thus the study represents R. alatoreticula as a value-added bio-resource that could be featured in food and pharmaceutical industries for betterment of humankind.
Collapse
Affiliation(s)
- Somanjana Khatua
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| | - Surashree Sen Gupta
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Mahua Ghosh
- Department of Chemical Technology, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata, West Bengal 700009 India
| | - Sudipta Tripathi
- Institute of Agricultural Science, University of Calcutta, 51/2 Hazra Road, Kolkata, West Bengal 700019 India
| | - Krishnendu Acharya
- Molecular and Applied Mycology and Plant Pathology Laboratory, Centre of Advanced Study, Department of Botany, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal 700019 India
| |
Collapse
|
5
|
Dutta T, Chattopadhyay AP, Ghosh NN, Khatua S, Acharya K, Kundu S, Mitra D, Das M. Biogenic silver nanoparticle synthesis and stabilization for apoptotic activity; insights from experimental and theoretical studies. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01216-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|