1
|
Chen H, Su W, Li T, Wang Y, Li Z, Xiong L, Chen ZS, Zhang C, Wang T. Recent advances in small molecule design strategies against hepatic fibrosis. Eur J Med Chem 2025; 286:117281. [PMID: 39854939 DOI: 10.1016/j.ejmech.2025.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Hepatic fibrosis, a widespread pathological process observed across various liver diseases, is acknowledged as a potentially reversible condition. In recent years, liver fibrosis has garnered extensive research attention, with a primary emphasis on developing drugs that can directly block or reverse this condition. This paper presents a comprehensive review of the design strategies for various anti-hepatic fibrosis agents that have been many efficacious small-molecule drugs. This review encompasses the synthesis and design of nuclear receptor ligands (such as VDR and Nurr7), kinase inhibitors (including ALK5 and JAK1), selective PDE inhibitors, small-molecule monomers derived from natural products, and other small molecules. The aim of this review is to provide promising avenues and valuable insights for the continued development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Heming Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Su
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhuangyu Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA.
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Ceccherini E, Morlando A, Norelli F, Coco B, Bellini M, Brunetto MR, Cecchettini A, Rocchiccioli S. Cytoskeleton Remodeling-Related Proteins Represent a Specific Salivary Signature in PSC Patients. Molecules 2024; 29:5783. [PMID: 39683940 DOI: 10.3390/molecules29235783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/28/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024] Open
Abstract
Primary sclerosing cholangitis (PSC) and Primary biliary cholangitis (PBC) are chronic inflammatory biliary diseases characterized by progressive damage of the bile ducts, resulting in hepatobiliary fibrosis and cirrhosis. Currently, specific biomarkers that allow to distinguish between PSC and PBC do not exist. In this study, we examined the salivary proteome by carrying out a comprehensive and non-invasive screening aimed at highlighting possible quali-quantitative protein deregulations that could be the starting point for the identification of effective biomarkers in future. Saliva samples collected from 6 PBC patients were analyzed using a liquid chromatography-tandem mass spectrometry technique, and the results were compared with those previously obtained in the PSC group. We identified 40 proteins as significantly deregulated in PSC patients compared to the PBC group. The Gene Ontology and pathway analyses highlighted that several proteins (e.g., small integral membrane protein 22, cofilin-1, macrophage-capping protein, plastin-2, and biliverdin reductase A) were linked to innate immune responses and actin cytoskeleton remodeling, which is a critical event in liver fibrosis and cancer progression. These findings provide new foundations for a deeper understanding of the pathophysiology of PSC and demonstrate that saliva is a suitable biological sample for obtaining proteomic fingerprints useful in the search for biomarkers capable of discriminating between the two cholestatic diseases.
Collapse
Affiliation(s)
- Elisa Ceccherini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Antonio Morlando
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Francesco Norelli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - Barbara Coco
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy
| | - Massimo Bellini
- Gastrointestinal Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56124 Pisa, Italy
| | - Maurizia Rossana Brunetto
- Hepatology Unit, Reference Centre of the Tuscany Region for Chronic Liver Disease and Cancer, University Hospital of Pisa, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Antonella Cecchettini
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Silvia Rocchiccioli
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| |
Collapse
|
3
|
Shamsan E, Almezgagi M, Gamah M, Khan N, Qasem A, Chuanchuan L, Haining F. The role of PI3k/AKT signaling pathway in attenuating liver fibrosis: a comprehensive review. Front Med (Lausanne) 2024; 11:1389329. [PMID: 38590313 PMCID: PMC10999701 DOI: 10.3389/fmed.2024.1389329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Excessive accumulation of extracellular matrix (ECM) components within the liver leads to a pathological condition known as liver fibrosis. Alcohol abuse, non-alcoholic fatty liver disease (NAFLD), autoimmune issues, and viral hepatitis cause chronic liver injury. Exploring potential therapeutic targets and understanding the molecular mechanisms involved in liver fibrosis are essential for the development of effective interventions. The goal of this comprehensive review is to explain how the PI3K/AKT signaling pathway contributes to the reduction of liver fibrosis. The potential of this pathway as a therapeutic target is investigated through a summary of results from in vivo and in vitro studies. Studies focusing on PI3K/AKT activation have shown a significant decrease in fibrosis markers and a significant improvement in liver function. The review emphasizes how this pathway may prevent ECM synthesis and hepatic stellate cell (HSC) activation, ultimately reducing the fibrotic response. The specific mechanisms and downstream effectors of the PI3K/AKT pathway in liver fibrosis constitute a rapidly developing field of study. In conclusion, the PI3K/AKT signaling pathway plays a significant role in attenuating liver fibrosis. Its complex role in regulating HSC activation and ECM production, demonstrated both in vitro and in vivo, underscores its potential as a effective therapeutic approach for managing liver fibrosis and slowing disease progression. A comprehensive review of this field provides valuable insights into its future developments and implications for clinical applications.
Collapse
Affiliation(s)
- Emad Shamsan
- College of Clinical Medicine, Qinghai University, Xining, China
- College of Medical Science, Taiz University, Taiz, Yemen
| | - Maged Almezgagi
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Mohammed Gamah
- College of Clinical Medicine, Qinghai University, Xining, China
| | - Naveed Khan
- College of Clinical Medicine, Qinghai University, Xining, China
| | | | - Liu Chuanchuan
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| | - Fan Haining
- College of Clinical Medicine, Qinghai University, Xining, China
- Qinghai University Affiliated Hospital, Xining, China
| |
Collapse
|
4
|
Guadalupi G, Contini C, Iavarone F, Castagnola M, Messana I, Faa G, Onali S, Chessa L, Vitorino R, Amado F, Diaz G, Manconi B, Cabras T, Olianas A. Combined Salivary Proteome Profiling and Machine Learning Analysis Provides Insight into Molecular Signature for Autoimmune Liver Diseases Classification. Int J Mol Sci 2023; 24:12207. [PMID: 37569584 PMCID: PMC10418803 DOI: 10.3390/ijms241512207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/13/2023] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases that target the liver and have a wide spectrum of presentation. A global overview of quantitative variations on the salivary proteome in presence of these two pathologies is investigated in this study. The acid-insoluble salivary fraction of AIH and PBC patients, and healthy controls (HCs), was analyzed using a gel-based bottom-up proteomic approach combined with a robust machine learning statistical analysis of the dataset. The abundance of Arginase, Junction plakoglobin, Desmoplakin, Hexokinase-3 and Desmocollin-1 decreased, while that of BPI fold-containing family A member 2 increased in AIHp compared to HCs; the abundance of Gelsolin, CD14, Tumor-associated calcium signal transducer 2, Clusterin, Heterogeneous nuclear ribonucleoproteins A2/B1, Cofilin-1 and BPI fold-containing family B member 2 increased in PBCp compared to HCs. The abundance of Hornerin decreased in both AIHp and PBCp with respect to HCs and provided an area under the ROC curve of 0.939. Machine learning analysis confirmed the feasibility of the salivary proteome to discriminate groups of subjects based on AIH or PBC occurrence as previously suggested by our group. The topology-based functional enrichment analysis performed on these potential salivary biomarkers highlights an enrichment of terms mostly related to the immune system, but also with a strong involvement in liver fibrosis process and with antimicrobial activity.
Collapse
Affiliation(s)
- Giulia Guadalupi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Cristina Contini
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Federica Iavarone
- Fondazione Policlinico Universitario IRCCS “A. Gemelli”, 00168 Rome, Italy;
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Massimo Castagnola
- Laboratorio di Proteomica, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00168 Rome, Italy;
| | - Irene Messana
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta”, Consiglio Nazionale delle Ricerche, 00168 Rome, Italy;
| | - Gavino Faa
- Division of Pathology, Department of Medical Sciences and Public Health, University Hospital, 09124 Cagliari, Italy;
| | - Simona Onali
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Luchino Chessa
- Liver Unit, University Hospital of Cagliari, 09124 Cagliari, Italy; (S.O.); (L.C.)
| | - Rui Vitorino
- iBiMED, Department of Medical Science, University of Aveiro, 3810-193 Aveiro, Portugal;
- UnIC@RISE, Department of Surgery and Physiology, Faculty of Medicine of the University of Porto, 4200-319 Porto, Portugal
| | - Francisco Amado
- LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Giacomo Diaz
- Dipartimento di Scienze Biomediche, Università di Cagliari, 09124 Cagliari, Italy;
| | - Barbara Manconi
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Tiziana Cabras
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| | - Alessandra Olianas
- Dipartimento di Scienze della Vita e dell’Ambiente, Università di Cagliari, 09124 Cagliari, Italy; (G.G.); (C.C.); (T.C.); (A.O.)
| |
Collapse
|
5
|
Bao Y, Niu T, Zhu J, Mei Y, Shi Y, Meng R, Duan Q, Zhang N, Fan T, Wang Y, Pang Y, Li Y, He H, Song D. Evolution and Discovery of Matrine Derivatives as a New Class of Anti-Hepatic Fibrosis Agents Targeting Ewing Sarcoma Breakpoint Region 1 (EWSR1). J Med Chem 2023. [PMID: 37294950 DOI: 10.1021/acs.jmedchem.3c00286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A series of new tricyclic matrinane derivatives were continuously synthesized and evaluated for their inhibitory effects on genes and proteins related to hepatic fibrosis at the cellular level, including collagen type I α1 chain (COL1A1), α smooth muscle actin (α-SMA), connective tissue growth factor (CTGF), and matrix metalloprotein 2 (MMP-2). Among them, compound 6k exerted an appealing potency and significantly reduced liver injury and fibrosis in both bile duct ligation (BDL) rats and Mdr2 knockout mice. An activity-based protein profiling (ABPP) assay indicated that 6k might directly bind to Ewing sarcoma breakpoint region 1 (EWSR1) to inhibit its function and affect the expression of downstream liver fibrosis-related genes and thus regulate liver fibrosis. These results provided a potential novel target for the treatment of liver fibrosis and powerful information for the development of tricyclic matrinanes into promising anti-hepatic fibrosis agents.
Collapse
Affiliation(s)
- Yunyang Bao
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tianyu Niu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Jingyang Zhu
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yuheng Mei
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yulong Shi
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Runze Meng
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Qionglu Duan
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Tianyun Fan
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yudong Pang
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Yinghong Li
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Hongwei He
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| |
Collapse
|