1
|
Durcan C, Hossain M, Chagnon G, Perić D, Girard E. Mechanical experimentation of the gastrointestinal tract: a systematic review. Biomech Model Mechanobiol 2024; 23:23-59. [PMID: 37935880 PMCID: PMC10901955 DOI: 10.1007/s10237-023-01773-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/10/2023] [Indexed: 11/09/2023]
Abstract
The gastrointestinal (GI) organs of the human body are responsible for transporting and extracting nutrients from food and drink, as well as excreting solid waste. Biomechanical experimentation of the GI organs provides insight into the mechanisms involved in their normal physiological functions, as well as understanding of how diseases can cause disruption to these. Additionally, experimental findings form the basis of all finite element (FE) modelling of these organs, which have a wide array of applications within medicine and engineering. This systematic review summarises the experimental studies that are currently in the literature (n = 247) and outlines the areas in which experimentation is lacking, highlighting what is still required in order to more fully understand the mechanical behaviour of the GI organs. These include (i) more human data, allowing for more accurate modelling for applications within medicine, (ii) an increase in time-dependent studies, and (iii) more sophisticated in vivo testing methods which allow for both the layer- and direction-dependent characterisation of the GI organs. The findings of this review can also be used to identify experimental data for the readers' own constitutive or FE modelling as the experimental studies have been grouped in terms of organ (oesophagus, stomach, small intestine, large intestine or rectum), test condition (ex vivo or in vivo), number of directions studied (isotropic or anisotropic), species family (human, porcine, feline etc.), tissue condition (intact wall or layer-dependent) and the type of test performed (biaxial tension, inflation-extension, distension (pressure-diameter), etc.). Furthermore, the studies that investigated the time-dependent (viscoelastic) behaviour of the tissues have been presented.
Collapse
Affiliation(s)
- Ciara Durcan
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Mokarram Hossain
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK.
| | - Grégory Chagnon
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
| | - Djordje Perić
- Zienkiewicz Centre for Modelling, Data and AI, Faculty of Science and Engineering, Swansea University, Swansea, SA1 8EN, UK
| | - Edouard Girard
- Université Grenoble Alpes, CNRS, UMR 5525, VetAgro Sup, Grenoble INP, TIMC, 38000, Grenoble, France
- Laboratoire d'Anatomie des Alpes Françaises, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
2
|
Zhao J, Liao D, Gregersen H. Mechanical analysis of intestinal contractility in a neonatal maternal deprivation irritable bowel syndrome rat model. J Biomech 2019; 93:42-51. [PMID: 31213281 DOI: 10.1016/j.jbiomech.2019.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/05/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
The aims of the present study are to investigate biomechanical properties and provide mechanical analysis of contractility in ileum and colon in a neonatal maternal deprivation (NMD) irritable bowel syndrome (IBS) rat model. Mechanical testing was done on segments from ileum and colon in 25 IBS rats and 13 Control rats. Morphometric data were obtained from digitized images of the segments at no-load and zero-stress states. Pressure and diameter changes were measured during flow and ramp distensions under active and passive experimental conditions. Circumferential stresses (force per area) and strains (deformation) were computed with referenced to the zero-stress state. The contraction frequency was analyzed. Contraction thresholds and maximum contraction amplitude were calculated in terms of mechanical stress and strain. Compared with controls, the IBS rats had lower body weight (P < 0.01), smaller colonic opening angle (P < 0.05), higher colonic contraction frequency (P < 0.05 and P < 0.01) and lower contraction thresholds of pressure, stress and strain in both ileum and colon (P < 0.05 and P < 0.01). The maximum contraction pressure, stress and strain did not differ between IBS and Control groups (P > 0.05). In conclusion, the pressure, stress, and strain to evoke contractility in ileum and colon were lower whereas the frequency of induced colon contractions was higher in NMD IBS rats compared to normal rats. Furthermore, zero-stress state remodeling occur in colon in NMD IBS rats. Further studies on the association between intestinal biomechanical properties, hypersensitivity and afferent signaling in the IBS animal models are warranted.
Collapse
Affiliation(s)
- Jingbo Zhao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark.
| | - Donghua Liao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Hans Gregersen
- GIOME, Department of Surgery, Prince of Wales Hospital and Chinese University of Hong Kong, Hong Kong Special Administrative Region
| |
Collapse
|
3
|
Liu Y, Zhao J, Liao D, Wang G, Gregersen H. Stress-strain analysis of duodenal contractility in response to flow and ramp distension in rabbits fed low-fiber diet. Neurogastroenterol Motil 2019; 31:e13476. [PMID: 30246440 DOI: 10.1111/nmo.13476] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/16/2022]
Abstract
BACKGROUND Previously we demonstrated that low-fiber diet in rabbits affects the passive mechanomorphological properties in the small intestine, resulting in reduced intestinal wall thickness and collagen content, as well as intestinal wall softening. The aim of the present study was to evaluate the contractility in rabbits on long-term low-fiber diet and specifically to compare the contraction threshold, the frequency, and the amplitude of flow-induced and distension-induced contractions in the duodenum between rabbits on normal diet and on long-term low-fiber diet. METHODS Ten rabbits were fed a low-fiber diet for 5 months (Intervention group), and five rabbits were fed normal diet (Control group). The duodenal segments were used for determination of mechanical parameters for analyses of contractility. The duodenal experiments were carried out in organ baths containing physiological Krebs solution. Pressure and diameter changes induced by contractions in response to flow and ramp distension were measured. The frequencies and amplitude of contractions were analyzed. Distension-induced contraction thresholds and maximum contraction amplitude of flow-induced contractions were calculated in terms of mechanical stress and strain. Multiple linear regression analyses were applied to study dependencies between contractility parameters and wall thickness, wall area, and muscle layer thickness. KEY RESULTS During distension, the pressure, stress, and strain thresholds for induction of phasic contraction were biggest in the Intervention Group (P < 0.05). In addition, the contraction frequencies during flow-induced contraction were highest in the Intervention Group (P < 0.05), whereas the maximum contraction amplitudes in terms of pressure, diameter, stress, and strain were lowest in the Intervention Group (P < 0.05). The contraction thresholds and contraction frequencies were negatively associated with the wall thickness, wall area, and muscle layer thickness, whereas maximum contraction amplitudes were positively associated with the wall thickness, wall area, and muscle layer thickness. CONCLUSIONS AND INFERENCES Duodenal contractility in rabbits fed with long-term low-fiber diet exhibited low contraction amplitudes and high contraction thresholds and frequencies. The changes were associated with the low-fiber diet-induced histomorphological remodeling. Studies on detailed structural and functional diet-induced changes in smooth muscle and intestinal nerves are needed for better understanding the remodeling mechanisms.
Collapse
Affiliation(s)
- Yue Liu
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Zhuhai Da Hengqin Technology Development Co. Ltd., Zhuhai, China
| | - Jingbo Zhao
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark.,Mech-Sense, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark
| | - Donghua Liao
- GIOME Academia, Department of Clinical Medicine, Aarhus University, Aarhus N, Denmark
| | - Guixue Wang
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China
| | - Hans Gregersen
- GIOME and the Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, China.,GIOME, Department of Surgery, Chinese University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
4
|
Yu C, Xiong Y, Chen D, Li Y, Xu B, Lin Y, Tang Z, Jiang C, Wang L. Ameliorative effects of atractylodin on intestinal inflammation and co-occurring dysmotility in both constipation and diarrhea prominent rats. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2016; 21:1-9. [PMID: 28066135 PMCID: PMC5214900 DOI: 10.4196/kjpp.2017.21.1.1] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 05/31/2016] [Accepted: 07/14/2016] [Indexed: 12/12/2022]
Abstract
Intestinal disorders often co-occur with inflammation and dysmotility. However, drugs which simultaneously improve intestinal inflammation and co-occurring dysmotility are rarely reported. Atractylodin, a widely used herbal medicine, is used to treat digestive disorders. The present study was designed to characterize the effects of atractylodin on amelioration of both jejunal inflammation and the co-occurring dysmotility in both constipation-prominent (CP) and diarrhea-prominent (DP) rats. The results indicated that atractylodin reduced proinflammatory cytokines TNF-α, IL-1β, and IL-6 in the plasma and inhibited the expression of inflammatory mediators iNOS and NF-kappa B in jejunal segments in both CP and DP rats. The results indicated that atractylodin exerted stimulatory effects and inhibitory effects on the contractility of jejunal segments isolated from CP and DP rats respectively, showing a contractile-state-dependent regulation. Atractylodin-induced contractile-state-dependent regulation was also observed by using rat jejunal segments in low and high contractile states respectively (5 pairs of low/high contractile states). Atractylodin up-regulated the decreased phosphorylation of 20 kDa myosin light chain, protein contents of myosin light chain kinase (MLCK), and MLCK mRNA expression in jejunal segments of CP rats and down-regulated those increased parameters in DP rats. Taken together, atractylodin alleviated rat jejunal inflammation and exerted contractile-state-dependent regulation on the contractility of jejunal segments isolated from CP and DP rats respectively, suggesting the potential clinical implication for ameliorating intestinal inflammation and co-occurring dysmotility.
Collapse
Affiliation(s)
- Changchun Yu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yongjian Xiong
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Dapeng Chen
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yanli Li
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Bin Xu
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Yuan Lin
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Zeyao Tang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Chunling Jiang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| | - Li Wang
- Pharmaceutical College, Dalian Medical University, Dalian 116044, China
| |
Collapse
|
5
|
Zhao J, Chen P, Gregersen H. Stress-strain analysis of contractility in the ileum in response to flow and ramp distension in streptozotocin-induced diabetic rats--association with advanced glycation end product formation. J Biomech 2015; 48:1075-83. [PMID: 25682538 DOI: 10.1016/j.jbiomech.2015.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 12/23/2014] [Accepted: 01/24/2015] [Indexed: 12/28/2022]
Abstract
This study compared the ileal contractility and analyzed the association between contractility with advanced glycation end product (AGE) formation in normal and streptozotocin (STZ)-induced diabetic rats. Nine STZ-induced diabetic rats (Diabetes group) and 9 normal rats (Normal group) were used. The motility experiments were carried out on ileums in organ baths containing physiological Krebs solution. Ileal pressure and diameter changes were obtained from basic, flow-induced and ramp distension-induced contractions. The frequency and amplitude of contractions were analyzed from pressure-diameter curves. Distension-induced contraction thresholds and maximum contraction amplitude of basic and flow-induced contractions were calculated in terms of stress and strain. AGE and its receptor (RAGE) in the layers were detected by immunohistochemistry staining. The maximum stress of flow-induced contractions was lowest in the Diabetes Group (P<0.05). During ramp distension, the pressure and stress thresholds and Young's modulus to induce phasic contraction were lowest in the Diabetes Group (P<0.05 and P<0.01). AGE and RAGE expressions in the different ileum layers were highest in the Diabetes group. The contraction pressure and stress thresholds were significantly associated with AGE expression in the muscle layer and RAGE expression in mucosa epithelium and neurons. The diabetic intestine was hypersensitive to distension for contraction induction. However, the contraction force produced by smooth muscle was lowest in diabetic rats. Increased AGE/RAGE expression was associated with the contractility changes in diabetic rats.
Collapse
Affiliation(s)
- Jingbo Zhao
- Institute of Clinical medicine, Aarhus University, Brendstrupgaardsvej 100, Aarhus N 8200, Denmark; GIOME Center, College of Bioengineering, Chongqing University, Chongqing 400045, China
| | - Pengmin Chen
- Department of Molecular Biology, Institute of Clinical Medicine, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hans Gregersen
- GIOME Center, College of Bioengineering, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Phasic and tonic smooth muscle function of the partially obstructed guinea pig intestine. J Biomed Biotechnol 2011; 2011:489720. [PMID: 22162636 PMCID: PMC3228609 DOI: 10.1155/2011/489720] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 08/29/2011] [Indexed: 12/19/2022] Open
Abstract
This study was to generate phasic and tonic stress-strain curves for evaluation of smooth muscle function in the obstructed guinea pig jejunum. Partial and sham obstruction of the jejunum in guinea pigs was created surgically, with guinea pigs not being operated on served as normal controls. The animals survived 2, 4, 7, and 14 days, respectively. The jejunal segment was distended to 10 cm H2O. The pressure and outer diameter changes were recorded. Passive conditions were obtained by using papaverine. Total phasic, tonic, and passive circumferential stress and strain were computed from the diameter and pressure data with reference to the zero-stress-state geometry. The active phasic and tonic stresses were defined as the total phasic and tonic stress minus the passive stress. The thickness of intestinal muscle layers increased in a time-dependent manner after obstruction. The amplitude of passive, total phasic, total tonic, active phasic, and active tonic circumferential stresses increased as function of strain 7 days after obstruction. However, when normalized to muscle layer thickness, the amplitude of active stresses did not differ among the groups. In conclusion, the long-term-obstructed intestine exhibits increased total smooth muscle contraction force. However, the contraction force per smooth muscle unit did not increase.
Collapse
|