1
|
Zhang C, Yin Z, Hu F, Lin X, Guan Q, Zhang F, Zhang X. Omega-3 Polyunsaturated Fatty Acids Alleviate Intestinal Barrier Dysfunction in Obstructive Jaundice Rats. Mol Biotechnol 2024; 66:1954-1960. [PMID: 37507597 DOI: 10.1007/s12033-023-00829-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023]
Abstract
Obstructive jaundice (OJ) can cause multiple pathophysiological consequences including intestinal barrier dysfunction. Omega-3 has been indicated to have a promising therapeutic effect on OJ. This study aimed to further investigate the functions of omega-3 on OJ-induced intestinal injury. A rat OJ model was established by bile duct ligation with or without omega-3 administration. ELISA was utilized for measuring serum levels of inflammatory cytokines. Hematoxylin-eosin staining and TUNEL staining were employed for detecting the morphological changes and cell apoptosis in rat intestine. Western blotting was utilized for evaluating expression of tight junction proteins in the intestinal tissues. Omgea-3 offset the reduction in body weight of OJ rats. Omega-3 alleviated inflammatory response, pathological damages and cell apoptosis in the intestine of OJ rats. Additionally, omega-3 enhanced levels of tight junction proteins in the intestinal tissues of OJ rats. Omega-3 ameliorates OJ-triggered impairment of intestinal barrier function in rats.
Collapse
Affiliation(s)
- Changxi Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Zhicheng Yin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Feng'ai Hu
- Clinical Medicine Laboratory, Binzhou Medical University Hospital, Binzhou, 256603, Shandong, China
| | - Xutao Lin
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Qinghai Guan
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Fan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China
| | - Xingyuan Zhang
- Department of General Surgery, Binzhou Medical University Hospital, No.661, Huanghe 2nd Road, Binzhou, 256603, Shandong, China.
| |
Collapse
|
2
|
Song Y, Wei J, Li R, Fu R, Han P, Wang H, Zhang G, Li S, Chen S, Liu Z, Zhao Y, Zhu C, Zhu J, Zhang S, Pei H, Cheng J, Wu J, Dong L, Song G, Shen X, Yao Q. Tyrosine kinase receptor B attenuates liver fibrosis by inhibiting TGF-β/SMAD signaling. Hepatology 2023; 78:1433-1447. [PMID: 36800849 PMCID: PMC10581422 DOI: 10.1097/hep.0000000000000319] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 02/22/2023]
Abstract
BACKGROUND AND AIMS Liver fibrosis is a leading indicator for increased mortality and long-term comorbidity in NASH. Activation of HSCs and excessive extracellular matrix production are the hallmarks of liver fibrogenesis. Tyrosine kinase receptor (TrkB) is a multifunctional receptor that participates in neurodegenerative disorders. However, paucity of literature is available about TrkB function in liver fibrosis. Herein, the regulatory network and therapeutic potential of TrkB were explored in the progression of hepatic fibrosis. METHODS AND RESULTS The protein level of TrkB was decreased in mouse models of CDAHFD feeding or carbon tetrachloride-induced hepatic fibrosis. TrkB suppressed TGF-β-stimulated proliferation and activation of HSCs in 3-dimensional liver spheroids and significantly repressed TGF-β/SMAD signaling pathway either in HSCs or in hepatocytes. The cytokine, TGF-β, boosted Nedd4 family interacting protein-1 (Ndfip1) expression, promoting the ubiquitination and degradation of TrkB through E3 ligase Nedd4-2. Moreover, carbon tetrachloride intoxication-induced hepatic fibrosis in mouse models was reduced by adeno-associated virus vector serotype 6 (AAV6)-mediated TrkB overexpression in HSCs. In addition, in murine models of CDAHFD feeding and Gubra-Amylin NASH (GAN), fibrogenesis was reduced by adeno-associated virus vector serotype 8 (AAV8)-mediated TrkB overexpression in hepatocytes. CONCLUSION TGF-β stimulated TrkB degradation through E3 ligase Nedd4-2 in HSCs. TrkB overexpression inhibited the activation of TGF-β/SMAD signaling and alleviated the hepatic fibrosis both in vitro and in vivo . These findings demonstrate that TrkB could be a significant suppressor of hepatic fibrosis and confer a potential therapeutic target in hepatic fibrosis.
Collapse
Affiliation(s)
- Yu Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jiayi Wei
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Rong Li
- Department of Neurosurgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, China
| | - Ruifeng Fu
- Shanghai Key Lab of Cell Engineering, Translational Medicine Research Center, Naval Medical University, Shanghai, China
| | - Pei Han
- Otsuka Shanghai Research Institute, Shanghai, China
| | - Heming Wang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Guangcong Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shuyu Li
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Sinuo Chen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Zhiyong Liu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Yicheng Zhao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Center for Pathogen Biology and Infectious Diseases, The First Hospital of Jilin University, Changchun, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Changfeng Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Jimin Zhu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Shuncai Zhang
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Hao Pei
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China
| | - Jiefei Cheng
- Otsuka Shanghai Research Institute, Shanghai, China
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian Wu
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
- MOE/NHC/CAMS Key Laboratory of Medical Molecular Virology, Department of Medical Microbiology and Parasitology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ling Dong
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Guangqi Song
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Joint Laboratory of Biomaterials and Translational Medicine, Puheng Technology, Suzhou, China
| | - Xizhong Shen
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| | - Qunyan Yao
- Department of Gastroenterology and Hepatology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Liver Diseases, Shanghai, China
| |
Collapse
|
3
|
Fernandes A, Rodrigues PM, Pintado M, Tavaria FK. A systematic review of natural products for skin applications: Targeting inflammation, wound healing, and photo-aging. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154824. [PMID: 37119762 DOI: 10.1016/j.phymed.2023.154824] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/04/2023] [Accepted: 04/15/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Every day the skin is constantly exposed to several harmful factors that induce oxidative stress. When the cells are incapable to maintain the balance between antioxidant defenses and reactive oxygen species, the skin no longer can keep its integrity and homeostasis. Chronic inflammation, premature skin aging, tissue damage, and immunosuppression are possible consequences induced by sustained exposure to environmental and endogenous reactive oxygen species. Skin immune and non-immune cells together with the microbiome are essential to efficiently trigger skin immune responses to stress. For this reason, an ever-increasing demand for novel molecules capable of modulating immune functions in the skin has risen the level of their development, particularly in the field of natural product-derived molecules. PURPOSE In this review, we explore different classes of molecules that showed evidence in modulate skin immune responses, as well as their target receptors and signaling pathways. Moreover, we describe the role of polyphenols, polysaccharides, fatty acids, peptides, and probiotics as possible treatments for skin conditions, including wound healing, infection, inflammation, allergies, and premature skin aging. METHODS Literature was searched, analyzed, and collected using databases, including PubMed, Science Direct, and Google Scholar. The search terms used included "Skin", "wound healing", "natural products", "skin microbiome", "immunomodulation", "anti-inflammatory", "antioxidant", "infection", "UV radiation", "polyphenols", "polysaccharides", "fatty acids", "plant oils", "peptides", "antimicrobial peptides", "probiotics", "atopic dermatitis", "psoriasis", "auto-immunity", "dry skin", "aging", etc., and several combinations of these keywords. RESULTS Natural products offer different solutions as possible treatments for several skin conditions. Significant antioxidant and anti-inflammatory activities were reported, followed by the ability to modulate immune functions in the skin. Several membrane-bound immune receptors in the skin recognize diverse types of natural-derived molecules, promoting different immune responses that can improve skin conditions. CONCLUSION Despite the increasing progress in drug discovery, several limiting factors need future clarification. Understanding the safety, biological activities, and precise mechanisms of action is a priority as well as the characterization of the active compounds responsible for that. This review provides directions for future studies in the development of new molecules with important pharmaceutical and cosmeceutical value.
Collapse
Affiliation(s)
- A Fernandes
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| | - P M Rodrigues
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - M Pintado
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - F K Tavaria
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| |
Collapse
|
4
|
Henriksen NL, Hansen SH, Lycas MD, Pan X, Eriksen T, Johansen LS, Sprenger RR, Ejsing CS, Burrin DG, Skovgaard K, Christensen VB, Thymann T, Pankratova S. Cholestasis alters brain lipid and bile acid composition and compromises motor function in neonatal piglets. Physiol Rep 2022; 10:e15368. [PMID: 35822260 PMCID: PMC9277266 DOI: 10.14814/phy2.15368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/12/2022] [Accepted: 06/06/2022] [Indexed: 11/24/2022] Open
Abstract
Infants with neonatal cholestasis are prone to neurodevelopmental deficits, however, the underlying pathogenesis is unclear. Lipid malabsorption and accumulation of potentially neurotoxic molecules in the blood such as bile acids are important yet relatively unexplored pathways. Here, we developed a translational piglet model to understand how the molecular bile acid and lipid composition of the brain is affected by this disease and relates to motor function. Piglets (8-days old) had bile duct ligation or sham surgery and were fed a formula diet for 3 weeks. Alongside sensory-motor deficits observed in bile duct-ligated animals, we found a shift toward a more hydrophilic and conjugated bile acid profile in the brain. Additionally, comprehensive lipidomics of the cerebellum revealed a decrease in total lipids including phosphatidylinositols and phosphatidylserines and increases in lysophospholipid species. This was paralleled by elevated cerebellar expression of genes related to inflammation and tissue damage albeit without significant impact on the brain transcriptome. This study offers new insights into the developing brain's molecular response to neonatal cholestasis indicating that bile acids and lipids may contribute in mediating motor deficits.
Collapse
Affiliation(s)
- Nicole Lind Henriksen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Svend Høime Hansen
- Department of Clinical BiochemistryCopenhagen University Hospital, RigshospitaletCopenhagen ØDenmark
| | | | - Xiaoyu Pan
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Thomas Eriksen
- Department of Veterinary Clinical SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | | | - Richard R. Sprenger
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdense MDenmark
| | - Christer Stenby Ejsing
- Department of Biochemistry and Molecular Biology, VILLUM Center for Bioanalytical SciencesUniversity of Southern DenmarkOdense MDenmark
| | - Douglas G. Burrin
- Department of Pediatrics, United States Department of Agriculture, Agricultural Research ServiceChildren's Nutrition Research Center, Baylor College of MedicineHoustonTexasUSA
| | - Kerstin Skovgaard
- Department of Biotechnology and BiomedicineTechnical University of DenmarkLyngbyDenmark
| | - Vibeke Brix Christensen
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
- Department of Pediatrics and Adolescent MedicineCopenhagen University Hospital, RigshospitaletCopenhagen ØDenmark
| | - Thomas Thymann
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| | - Stanislava Pankratova
- Comparative Pediatrics and Nutrition, Department of Veterinary and Animal SciencesUniversity of CopenhagenFrederiksberg CDenmark
| |
Collapse
|
5
|
Chen L, Yu J. Modulation of Toll-like receptor signaling in innate immunity by natural products. Int Immunopharmacol 2016; 37:65-70. [PMID: 26899347 PMCID: PMC4916003 DOI: 10.1016/j.intimp.2016.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/23/2016] [Accepted: 02/03/2016] [Indexed: 12/14/2022]
Abstract
For centuries, natural products and their derivatives have provided a rich source of compounds for the development of new immunotherapies in the treatment of human disease. Many of these compounds are currently undergoing clinical trials, particularly as anti-oxidative, anti-microbial, and anti-cancer agents. However, the function and mechanism of natural products in how they interact with our immune system has yet to be extensively explored. Natural immune modulators may provide the key to control and ultimately defeat disorders affecting the immune system. They can either up- or down-regulate the immune response with few undesired adverse effects. In this review, we summarize the recent advancements made in utilizing natural products for immunomodulation and their important molecular targets, members of the Toll-like receptor (TLR) family, in the innate immune system.
Collapse
Affiliation(s)
- Luxi Chen
- Medical Scientist Training Program, The Ohio State University, Columbus, OH, USA
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA; The Ohio State University Comprehensive Cancer Center, The James Cancer Hospital & Solove Research Center, Columbus, OH, USA.
| |
Collapse
|
6
|
Potent natural products and herbal medicines for treating liver fibrosis. Chin Med 2015; 10:7. [PMID: 25897319 PMCID: PMC4403904 DOI: 10.1186/s13020-015-0036-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 04/01/2015] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic liver injury characterized by progressive inflammation and deposition of extracellular matrix components. The pathological condition of liver fibrosis involves secretion of extracellular matrix proteins and formation of scar tissue. The major regulators involved in hepatic fibrogenesis are the transforming growth factor (TGF)-β1/SMAD and toll-like receptor 4 (TLR4)-initiated myeloid differentiation primary response 88 gene (MyD88)/NF-ĸB cell signaling pathways. This article reviews natural products and herbal medicines that have demonstrated activity against liver fibrosis through different mechanisms of action, including anti-hepatitis B and C virus activity, anti-inflammation, inhibition of cytokine production and nuclear receptor activation, and free radical scavenging.
Collapse
|
7
|
Chen CC, Ho CY, Chaung HC, Tain YL, Hsieh CS, Kuo FY, Yang CY, Huang LT. Fish omega-3 fatty acids induce liver fibrosis in the treatment of bile duct-ligated rats. Dig Dis Sci 2013. [PMID: 23203732 DOI: 10.1007/s10620-012-2489-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND Biliary atresia-induced cholestasis increases hepatic oxidative stress with eventual progression to cirrhosis and liver failure. Omega-3 fatty acids play a possible role in the regulation of oxidative stress and the improvement of cholestasis. AIM The goal of the present study is to investigate the role of dietary supplementation of fish omega-3 fatty acids in the reduction of hepatocellular damage by using a rat common bile duct ligation model. METHODS Sprague-Dawley rats received either sham or bile duct ligation (BDL) and were divided into four study groups: Sham+saline (Sham+sal) group, Sham+Fish oil (Sham+FO) group, BDL+saline (BDL+sal) group, and BDL+Fish oil (BDL+FO) group. Rats from each group were assigned to receive, besides regular chow, once daily with either normal saline or fish omega-3 fatty acids (0.4 % of its own body weight) via gavage for 10 days. Samples of blood, liver tissue homogenates, and histological studies from different groups were analyzed at the end of the study. RESULTS Rats from BDL+FO had significantly impaired liver function as compared to other study groups (p < 0.05 is of significant difference). Ishak scores and the TGF-b1 contents were significantly higher in rats that received BDL+FO, p < 0.05. Contrary to TGF-b1 liver content, rats from the BDL+FO group had the lowest glutathione levels among the study groups, p < 0.05. CONCLUSIONS Fish omega-3 fatty acids supplementation, albeit increased tissue content of DHA, tended to increase liver fibrosis in BDL rats, decrease liver glutathione level, and compromise hepatic function; fish oil supplementation to subjects with biliary atresia might be of potential hazard and should be used with caution.
Collapse
Affiliation(s)
- Chih-Cheng Chen
- Pediatrics Department, Kaohsiung Chang-Gung Memorial Hospital, Chang-Gung University College of Medicine, 123 Ta-Pei Road, Niao Song, Kaohsiung, 833, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|