1
|
Paris S, Ekeanyanwu R, Jiang Y, Davis D, Spechler SJ, Souza RF. Obesity and its effects on the esophageal mucosal barrier. Am J Physiol Gastrointest Liver Physiol 2021; 321:G335-G343. [PMID: 34405732 DOI: 10.1152/ajpgi.00199.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Obesity is associated with gastroesophageal reflux disease (GERD) and its complications including reflux esophagitis, Barrett's esophagus, and esophageal adenocarcinoma. Traditionally, these associations have been attributed to the mechanical effect of abdominal fat in increasing intra-abdominal pressure, thereby promoting gastroesophageal reflux and causing disruption of antireflux mechanisms at the esophagogastric junction. However, recent studies suggest that visceral adipose tissue (VAT) produces numerous cytokines that can cause esophageal inflammation and impair esophageal mucosal barrier integrity through reflux-independent mechanisms that render the esophageal mucosa especially susceptible to GERD-induced injury. In this report, we review mechanisms of esophageal mucosal defense, the genesis and remodeling of visceral adipose tissue during obesity, and the potential role of substances produced by VAT, especially the VAT that encircles the esophagogastric junction, in the impairment of esophageal mucosal barrier integrity that leads to the development of GERD complications.
Collapse
Affiliation(s)
- Shere Paris
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas
| | - Rebecca Ekeanyanwu
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel Davis
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas.,Department of Surgery, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas
| | - Stuart Jon Spechler
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas.,Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas
| | - Rhonda F Souza
- Center for Esophageal Research, Baylor Scott & White Research Institute, Dallas, Texas.,Department of Medicine, Center for Esophageal Diseases, Baylor University Medical Center, Dallas, Texas
| |
Collapse
|
2
|
Nakhoul NL, Tu CL, Brown KL, Islam MT, Hodges AG, Abdulnour-Nakhoul SM. Calcium-sensing receptor deletion in the mouse esophagus alters barrier function. Am J Physiol Gastrointest Liver Physiol 2020; 318:G144-G161. [PMID: 31709833 PMCID: PMC6985844 DOI: 10.1152/ajpgi.00021.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Calcium-sensing receptor (CaSR) is the molecular sensor by which cells respond to small changes in extracellular Ca2+ concentrations. CaSR has been reported to play a role in glandular and fluid secretion in the gastrointestinal tract and to regulate differentiation and proliferation of skin keratinocytes. CaSR is present in the esophageal epithelium, but its role in this tissue has not been defined. We deleted CaSR in the mouse esophagus by generating keratin 5 CreER;CaSRFlox+/+compound mutants, in which loxP sites flank exon 7 of CaSR gene. Recombination was initiated with multiple tamoxifen injections, and we demonstrated exon 7 deletion by PCR analysis of genomic DNA. Quantitative real-time PCR and Western blot analyses showed a significant reduction in CaSR mRNA and protein expression in the knockout mice (EsoCaSR-/-) as compared with control mice. Microscopic examination of EsoCaSR-/- esophageal tissues showed morphological changes including elongation of the rete pegs, abnormal keratinization and stratification, and bacterial buildup on the luminal epithelial surface. Western analysis revealed a significant reduction in levels of adherens junction proteins E-cadherin and β catenin and tight junction protein claudin-1, 4, and 5. Levels of small GTPase proteins Rac/Cdc42, involved in actin remodeling, were also reduced. Ussing chamber experiments showed a significantly lower transepithelial resistance in knockout (KO) tissues. In addition, luminal-to-serosal-fluorescein dextran (4 kDa) flux was higher in KO tissues. Our data indicate that CaSR plays a role in regulating keratinization and cell-cell junctional complexes and is therefore important for the maintenance of the barrier function of the esophagus.NEW & NOTEWORTHY The esophageal stratified squamous epithelium maintains its integrity by continuous proliferation and differentiation of the basal cells. Here, we demonstrate that deletion of the calcium-sensing receptor, a G protein-coupled receptor, from the basal cells disrupts the structure and barrier properties of the epithelium.
Collapse
Affiliation(s)
- Nazih L. Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Chia-Ling Tu
- 3Endocrine Unit, Veterans Affairs Medical Center, University of California, San Francisco, California
| | - Karen L. Brown
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - M. Toriqul Islam
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Anna G. Hodges
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana
| | - Solange M. Abdulnour-Nakhoul
- 1Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana,2Department of Physiology, Tulane University School of Medicine, New Orleans, Louisiana,4Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana
| |
Collapse
|
3
|
Woodland P, Aktar R, Mthunzi E, Lee C, Peiris M, Preston SL, Blackshaw LA, Sifrim D. Distinct afferent innervation patterns within the human proximal and distal esophageal mucosa. Am J Physiol Gastrointest Liver Physiol 2015; 308:G525-31. [PMID: 25573174 PMCID: PMC4360043 DOI: 10.1152/ajpgi.00175.2014] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Little is known about the mucosal phenotype of the proximal human esophagus. There is evidence to suggest that the proximal esophagus is more sensitive to chemical and mechanical stimulation compared with the distal. This may have physiological relevance (e.g., in prevention of aspiration of gastroesophageal refluxate), but also pathological relevance (e.g., in reflux perception or dysphagia). Reasons for this increased sensitivity are unclear but may include impairment in mucosal barrier integrity or changes in sensory innervation. We assessed mucosal barrier integrity and afferent nerve distribution in the proximal and distal esophagus of healthy human volunteers. In 10 healthy volunteers baseline proximal and distal esophageal impedance was measured in vivo. Esophageal mucosal biopsies from the distal and proximal esophagus were taken, and baseline transepithelial electrical resistance (TER) was measured in Ussing chambers. Biopsies were examined immunohistochemically for presence and location of calcitonin gene-related peptide (CGRP)-immunoreactive nerve fibers. In a further four healthy volunteers we investigated for colocalization of CGRP and protein gene product (PGP) 9.5 immunoreactivity in nerve fibers. Baseline impedance was higher in the proximal than in the distal esophagus [2,936 Ω (SD578) vs. 2,229 Ω (SD821); P = 0.03], however, baseline TER was not significantly different between them. Mucosal CGRP-immunoreactive nerves were found in the epithelium of both proximal and distal esophagus, but were located more superficially in the proximal mucosa compared with the distal [11.5 (SD7) vs. 21.7 (SD5) cell layers from lumen, P = 0.002] 19% of proximal, and 10% of distal mucosal PGP-immunoreactive fibers colocalized with CGRP. PGP-immunoreactive fibers were also significantly closer to the luminal surface in the proximal compared with the distal esophagus (P < 0.001). We conclude that mucosal barrier integrity is similar in proximal and distal esophagus, but proximal mucosal afferent nerves are in a more superficial location. The enhanced sensitivity to reflux-evoked symptoms of the proximal esophagus most likely has an anatomical basis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Daniel Sifrim
- Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
4
|
Woodland P, Lee C, Duraisamy Y, Farré R, Dettmar P, Sifrim D, Sifrim D. Assessment and protection of esophageal mucosal integrity in patients with heartburn without esophagitis. Am J Gastroenterol 2013; 108:535-43. [PMID: 23358463 DOI: 10.1038/ajg.2012.469] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Intact esophageal mucosal integrity is essential to prevent symptoms during gastroesophageal reflux events. Approximately 70% of patients with heartburn have macroscopically normal esophageal mucosa. In patients with heartburn, persistent functional impairment of esophageal mucosal barrier integrity may underlie remaining symptoms. Topical protection of a functionally vulnerable mucosa may be an attractive therapeutic strategy. We aimed to evaluate esophageal mucosal functional integrity in patients with heartburn without esophagitis, and test the feasibility of an alginate-based topical mucosal protection. METHODS Three distal esophageal biopsies were obtained from 22 patients with heartburn symptoms, and 22 control subjects. In mini-Ussing chambers, the change in transepithelial electrical resistance (TER) of biopsies when exposed to neutral, weakly acidic, and acidic solutions was measured. The experiment was repeated in a further 10 patients after pretreatment of biopsies with sodium alginate, viscous control, or liquid control "protectant" solutions. RESULTS Biopsy exposure to neutral solution caused no change in TER. Exposure to weakly acidic and acidic solutions caused a greater reduction in TER in patients than in controls (weakly acid -7.2% (95% confidence interval (CI) -9.9 to -4.5) vs. 3.2% (-2.2 to 8.6), P<0.05; acidic -22.8% (-31.4 to 14.1) vs. -9.4% (-17.2 to -1.6), P<0.01). Topical pretreatment with alginate but not with control solutions prevented the acid-induced decrease in TER (-1% (-5.9 to 3.9) vs. -13.5 (-24.1 to -3.0) vs. -13.2 (-21.7 to -4.8), P<0.05). CONCLUSIONS Esophageal mucosa in patients with heartburn without esophagitis shows distinct vulnerability to acid and weakly acidic exposures. Experiments in vitro suggest that such vulnerable mucosa may be protected by application of an alginate-containing topical solution.
Collapse
Affiliation(s)
- Philip Woodland
- Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | | | | | | | | |
Collapse
|
5
|
Orlando RC, Paterson WG, Harnett KM, Ma J, Behar J, Biancani P, Guarino MPL, Altomare A, Cicala M, Cao W. Esophageal disease: updated information on inflammation. Ann N Y Acad Sci 2011; 1232:369-75. [PMID: 21950828 DOI: 10.1111/j.1749-6632.2011.06064.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The following on esophageal disease provides updated information the mucosal defense against acid and acid-pepsin injury; the roles of platelet activating factor, mast cells, proinflammatory cytokines, and chemokines in inflammation; differences and similarities in erosive and nonerosive esophagitis; acid and vanilloid receptors in esophageal mucosa; and bile acid receptors in esophageal epithelium.
Collapse
Affiliation(s)
- Roy C Orlando
- Gastroenterology, Cell, and Molecular Physiology, University of North Carolina School of Medicine at Chapel Hill, Chapel Hill, North Carolina, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Jovov B, Que J, Tobey NA, Djukic Z, Hogan BL, Orlando RC. Role of E-cadherin in the pathogenesis of gastroesophageal reflux disease. Am J Gastroenterol 2011; 106:1039-47. [PMID: 21448147 PMCID: PMC3568513 DOI: 10.1038/ajg.2011.102] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES An early event in the pathogenesis of gastroesophageal reflux disease (GERD) is an acid-induced increase in junctional (paracellular) permeability in esophageal epithelium (EE). The molecular events that account for this change are unknown. E-cadherin is a junctional protein important in barrier function in EE. Therefore, defects in barrier function in EE were sought in GERD as well as whether their presence correlated with abnormalities in e-cadherin. METHODS Endoscopic biopsies of EE from GERD (n=20; male 10; female 10; mean age 50 ± 10 years) and subjects with a healthy esophagus (controls; n=23; male 11; female 12; mean age 51 ± 11 years) were evaluated in mini-Ussing chambers and by western blot and immunochemistry; and serum analyzed by enzyme-linked immunosorbent assay (ELISA). A role for e-cadherin was also assessed using a unique conditional knockout of e-cadherin in adult mouse esophagus. RESULTS EE from GERD patients had lower electrical resistance and higher fluorescein flux than EE from controls; and the findings in GERD associated with cleavage of e-cadherin. Cleavage of e-cadherin in GERD was documented in EE by the presence of a 35-kDa, C-terminal fragment of the molecule on western blot and by an increase in soluble N-terminal fragments of the molecule in serum. Activation of the membrane metalloproteinase, A Disintegrin And Metalloproteinase (ADAM-10), was identified as a likely cause for cleavage of e-cadherin by western blot and immunostaining and a role for e-cadherin in the increased junctional permeability in EE from GERD supported by showing increased permeability after deletion of e-cadherin in mouse EE. CONCLUSIONS The EE in GERD has increased junctional permeability and this is in association with proteolytic cleavage of e-cadherin. As loss of e-cadherin can, alone, account for the increase in junctional permeability, cleavage of e-cadherin likely represents a critical molecular event in the pathogenesis of GERD, and identification of cleaved fragments may, if confirmed in larger studies, be valuable as a biomarker of GERD.
Collapse
Affiliation(s)
- Biljana Jovov
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jianwen Que
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA,Department of Biomedical Genetics, University of Rochester, Rochester, New York, USA
| | - Nelia A. Tobey
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Zorka Djukic
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Brigid L.M. Hogan
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy C. Orlando
- Division of Gastroenterology and Hepatology, Department of Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
7
|
Orlando RC. The integrity of the esophageal mucosa. Balance between offensive and defensive mechanisms. Best Pract Res Clin Gastroenterol 2010; 24:873-82. [PMID: 21126700 PMCID: PMC2995989 DOI: 10.1016/j.bpg.2010.08.008] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/17/2010] [Accepted: 08/23/2010] [Indexed: 01/31/2023]
Abstract
Heartburn is the most common and characteristic symptom of gastroesophageal reflux disease. It ultimately results from contact of refluxed gastric acid with nociceptors within the esophageal mucosa and transmission of this peripheral signal to the central nervous system for cognition. Healthy esophageal epithelium provides an effective barrier between refluxed gastric acid and esophageal nociceptors; but this barrier is vulnerable to attack and damage, particularly by acidic gastric contents. How gastric acid is countered by defensive elements within the esophageal mucosa is a major focus of this discussion. When the defense is successful, the subject is asymptomatic and when unsuccessful, the subject experiences heartburn. Those with heartburn commonly fall into one of three endoscopic types: nonerosive reflux disease, erosive esophagitis and Barrett's esophagus. Although what determines endoscopic type remains unknown; it is proposed herein that inflammation plays a key, modulating role.
Collapse
Affiliation(s)
- Roy C. Orlando
- Mary Kay & Eugene Bozymski and Linda & William Heizer Distinguished Professor of Gastroenterology; and Adjunct Professor of Cell and Molecular Physiology, University of North Carolina at Chapel Hill, Division of Gastroenterology & Hepatology, 103 Mason Farm Road, Molecular Biomedical Research Building, CB#7032, Chapel Hill, N.C.,27599, USA, Tel: 919-843-4583, Fax # 919-843-6899
| |
Collapse
|