1
|
Giacometti C, Gusella A, Cassaro M. Gastro-Esophageal Junction Precancerosis: Histological Diagnostic Approach and Pathogenetic Insights. Cancers (Basel) 2023; 15:5725. [PMID: 38136271 PMCID: PMC10741421 DOI: 10.3390/cancers15245725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/23/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
Barrett's esophagus (BE) was initially defined in the 1950s as the visualization of gastric-like mucosa in the esophagus. Over time, the definition has evolved to include the identification of goblet cells, which confirm the presence of intestinal metaplasia within the esophagus. Chronic gastro-esophageal reflux disease (GERD) is a significant risk factor for adenocarcinoma of the esophagus, as intestinal metaplasia can develop due to GERD. The development of adenocarcinomas related to BE progresses in sequence from inflammation to metaplasia, dysplasia, and ultimately carcinoma. In the presence of GERD, the squamous epithelium changes to columnar epithelium, which initially lacks goblet cells, but later develops goblet cell metaplasia and eventually dysplasia. The accumulation of multiple genetic and epigenetic alterations leads to the development and progression of dysplasia. The diagnosis of BE requires the identification of intestinal metaplasia on histologic examination, which has thus become an essential tool both in the diagnosis and in the assessment of dysplasia's presence and degree. The histologic diagnosis of BE dysplasia can be challenging due to sampling error, pathologists' experience, interobserver variation, and difficulty in histologic interpretation: all these problems complicate patient management. The development and progression of Barrett's esophagus (BE) depend on various molecular events that involve changes in cell-cycle regulatory genes, apoptosis, cell signaling, and adhesion pathways. In advanced stages, there are widespread genomic abnormalities with losses and gains in chromosome function, and DNA instability. This review aims to provide an updated and comprehensible diagnostic approach to BE based on the most recent guidelines available in the literature, and an overview of the pathogenetic and molecular mechanisms of its development.
Collapse
Affiliation(s)
- Cinzia Giacometti
- Pathology Unit, Department of Diagnostic Services, ULSS 6 Euganea, 35131 Padova, Italy; (A.G.); (M.C.)
| | | | | |
Collapse
|
2
|
Hasebe K, Yamazaki K, Yamaguchi J, Kokuryo T, Yokoyama Y, Miyata K, Fukaya M, Nagino M, Ebata T. Trefoil factor 1 inhibits the development of esophageal adenocarcinoma from Barrett's epithelium. J Transl Med 2022; 102:885-895. [PMID: 35279702 DOI: 10.1038/s41374-022-00771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 02/05/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Trefoil factor family 1 (TFF1) is one of three members of the trefoil factor family that are abundantly expressed in the gastrointestinal mucosal epithelium. Recent studies have shown that TFF1 acts as a tumor suppressor in gastric, pancreatic and hepatocellular carcinogenesis; however, little is known about its function in esophageal carcinogenesis, especially in esophageal adenocarcinoma (EAC). Barrett's epithelium is the metaplastic columnar epithelium of the esophagus and a known premalignant lesion of EAC. To investigate the role of TFF1 in EAC development, a mouse model of Barrett's epithelium was employed, and human specimens of EAC were assessed by immunohistochemistry (IHC) and methylation-specific PCR. Wild-type (WT) mice underwent gastrojejunostomy on the forestomach, resulting in the development of Barrett's epithelium-like (BE-like) epithelium adjacent to the anastomotic site. BE-like epithelium in these mice expressed TFF1, indicating the association of TFF1 with esophageal adenocarcinoma. TFF1-knockout (TFF1KO) mice underwent the same procedure as well, revealing that a deficiency in TFF1 resulted in the development of adenocarcinoma in the anastomotic site, presumably from BE-like epithelium. IHC of human samples revealed strong TFF1 expression in Barrett's epithelium, which was lost in some EACs, confirming the association between TFF1 and EAC development. Aberrant DNA hypermethylation in TFF1 promoter lesions was detected in TFF1-negative human EAC samples, further confirming not only the role of TFF1 in EAC but also the underlying mechanisms of TFF1 regulation. In addition, IHC revealed the nuclear translocation of β-catenin in human and mouse EAC, suggesting that activation of the Wnt/β-catenin pathway was induced by the loss of TFF1. In conclusion, these results indicate that TFF1 functions as a tumor suppressor to inhibit the development of esophageal carcinogenesis from Barrett's epithelium.
Collapse
Affiliation(s)
- Keiji Hasebe
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kimitoshi Yamazaki
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Junpei Yamaguchi
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| | - Toshio Kokuryo
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yukihiro Yokoyama
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kazushi Miyata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahide Fukaya
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masato Nagino
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tomoki Ebata
- Division of Surgical Oncology, Department of Surgery, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Fabisiak A, Bartoszek A, Kardas G, Fabisiak N, Fichna J. Possible application of trefoil factor family peptides in gastroesophageal reflux and Barrett's esophagus. Peptides 2019; 115:27-31. [PMID: 30831146 DOI: 10.1016/j.peptides.2019.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/16/2019] [Accepted: 02/24/2019] [Indexed: 12/14/2022]
Abstract
Gastroesophageal reflux disease (GERD) is a chronic disorder of the digestive tract characterised mainly by a heartburn. Being one of the most common gastrointestinal diseases, the prevalence of GERD reaches up to 25.9% in Europe. Barrett's esophagus (BE) is an acquired condition characterized by the replacement of the normal stratified squamous epithelium with metaplastic columnar epithelium. BE is believed to develop mainly from chronic GERD and is the most important risk factor of esophageal adenocarcinoma. Despite the availability of drugs such as proton pomp inhibitors and antacids, GERD is still a burden to local economy and impairs health-related quality of life in patients. Also, the endoscopic surveillance in patients with BE is burdensome and expensive what drives the need for biomarker of intestinal metaplasia and dysplasia. Trefoil factor family (TFF), consisting of TFF1, TFF2 and TFF3 peptides is gaining more and more attention due to its unique biochemical features and numerous functions. In this review the role of TFF1, TFF2 and TFF3 as potential treatment option and/or biomarker in the upper GI tract is discussed with particular focus on GERD and BE.
Collapse
Affiliation(s)
- Adam Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Digestive Tract Diseases, Faculty of Medicine, Medical University of Lodz, Poland
| | - Adrian Bartoszek
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Grzegorz Kardas
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Natalia Fabisiak
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland; Department of Gastroenterology, Faculty of Military Medicine, Medical University of Lodz, Poland
| | - Jakub Fichna
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland.
| |
Collapse
|
4
|
Wang Z, Kambhampati Thiruvengadam S, Cheng Y, Ma K, Simsek C, Tieu AH, Abraham JM, Liu X, Prasath V, Duncan M, Stark A, Trick A, Tsai HL, Wang H, He Y, Khashab MA, Ngamruengphong S, Shin EJ, Wang TH, Meltzer SJ. Methylation Biomarker Panel Performance in EsophaCap Cytology Samples for Diagnosing Barrett's Esophagus: A Prospective Validation Study. Clin Cancer Res 2019; 25:2127-2135. [PMID: 30670490 PMCID: PMC6594757 DOI: 10.1158/1078-0432.ccr-18-3696] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 12/28/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
Abstract
PURPOSE Barrett's esophagus is the only known precursor of esophageal adenocarcinoma (EAC). Although endoscopy and biopsy are standard methods for Barrett's esophagus diagnosis, their high cost and risk limit their use as a screening modality. Here, we sought to develop a Barrett's esophagus detection method based on methylation status in cytology samples captured by EsophaCap using a streamlined sensitive technique, methylation on beads (MOB). EXPERIMENTAL DESIGN We conducted a prospective cohort study on 80 patients (52 in the training set; 28 in the test set). We used MOB to extract and bisulfite-convert DNA, followed by quantitative methylation-specific PCR to assess methylation levels of 8 previously selected candidate markers. Lasso regression was applied to establish a prediction model in the training set, which was then tested on the independent test set. RESULTS In the training set, five of eight candidate methylation biomarkers (p16, HPP1, NELL1, TAC1, and AKAP12) were significantly higher in Barrett's esophagus patients than in controls. We built a four-biomarker-plus-age lasso regression model for Barrett's esophagus diagnosis. The AUC was 0.894, with sensitivity 94.4% [95% confidence interval (CI), 71%-99%] and specificity 62.2% (95% CI, 44.6%-77.3%) in the training set. This model also performed with high accuracy for Barrett's esophagus diagnosis in an independent test set: AUC = 0.929 (P < 0.001; 95% CI, 0.810%-1%), with sensitivity=78.6% (95% CI, 48.8%-94.3%) and specificity = 92.8% (95% CI, 64.1%-99.6%). CONCLUSIONS EsophaCap, in combination with an epigenetic biomarker panel and the MOB method, is a promising, well-tolerated, low-cost esophageal sampling strategy for Barrett's esophagus diagnosis. This approach merits further prospective studies in larger populations.
Collapse
Affiliation(s)
- Zhixiong Wang
- Gastrointestinal Surgical Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Center of Gastric Cancer, Sun Yat-Sen University, Guangzhou, China
| | - Swetha Kambhampati Thiruvengadam
- Division of Hematology/Oncology, Department of Medicine, Helen Diller Family Comprehensive Cancer Center, UCSF Medical Center, San Francisco, California
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Yulan Cheng
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ke Ma
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Cem Simsek
- Division of Gastroenterology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alan H Tieu
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - John M Abraham
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xi Liu
- Department of Pathology, the First Affiliated Hospital of Xi' an Jiaotong University, Xi' an, Shaanxi, China
| | - Vishnu Prasath
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Mark Duncan
- Department of Surgery, Johns Hopkins University, Baltimore, Maryland
| | - Alejandro Stark
- Departments of Mechanical Engineering and Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Alexander Trick
- Departments of Mechanical Engineering and Biomedical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Hua-Ling Tsai
- Division of Biostatistics, Department of Oncology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Hao Wang
- Division of Biostatistics, Department of Oncology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yulong He
- Gastrointestinal Surgical Center, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
- Center of Gastric Cancer, Sun Yat-Sen University, Guangzhou, China
- Gastrointestinal Surgical Center, Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Mouen A Khashab
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Saowanee Ngamruengphong
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Eun J Shin
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Tza-Huei Wang
- Department of Medicine, Johns Hopkins Hospital, Baltimore, Maryland
| | - Stephen J Meltzer
- Division of Gastroenterology, Department of Medicine and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
5
|
Saunders JH, Onion D, Collier P, Dorrington MS, Argent RH, Clarke PA, Reece-Smith AM, Parsons SL, Grabowska AM. Individual patient oesophageal cancer 3D models for tailored treatment. Oncotarget 2018; 8:24224-24236. [PMID: 27736801 PMCID: PMC5421842 DOI: 10.18632/oncotarget.12500] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 09/29/2016] [Indexed: 12/18/2022] Open
Abstract
Background A model to predict chemotherapy response would provide a marked clinical benefit, enabling tailored treatment of oesophageal cancer, where less than half of patients respond to the routinely administered chemotherapy. Methods Cancer cells were established from tumour biopsies taken from individual patients about to undergo neoadjuvant chemotherapy. A 3D-tumour growth assay (3D-TGA) was developed, in which cancer cells were grown with or without supporting mesenchymal cells, then subjected to chemo-sensitivity testing using the standard chemotherapy administered in clinic, and a novel emerging HDAC inhibitor, Panobinostat. RESULTS Individual patients cancer cells could be expanded and screened within a clinically applicable timescale of 3 weeks. Incorporating mesenchymal support within the 3D-TGA significantly enhanced both the growth and drug resistance profiles of the patients cancer cells. The ex vivo drug response in the presence, but not absence, of mesenchymal cells accurately reflected clinical chemo-sensitivity, as measured by tumour regression grade. Combination with Panobinostat enhanced response and proved efficacious in otherwise chemo-resistant tumours. Conclusions This novel method of establishing individual patient oesophageal cancers in the laboratory, from small endoscopic biopsies, enables clinically-relevant chemo-sensitivity testing, and reduces use of animals by providing more refined in vitro models for pre-screening of drugs. The 3D-TGA accurately predicted chemo-sensitivity in patients, and could be developed to guide tailored patient treatment. The incorporation of mesenchymal cells as the stromal cell component of the tumour micro-environment had a significant effect upon enhancing chemotherapy drug resistance in oesophageal cancer, and could prove a useful target for future drug development.
Collapse
Affiliation(s)
- John H Saunders
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - David Onion
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Pamela Collier
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Matthew S Dorrington
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Richard H Argent
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Philip A Clarke
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| | - Alex M Reece-Smith
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Simon L Parsons
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK.,Department of Upper GI Surgery, City Hospital Campus, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Anna M Grabowska
- Cancer Biology Unit, Division of Cancer & Stem Cells, School of Medicine, University of Nottingham, Nottingham, UK
| |
Collapse
|
6
|
Xie H, Guo JH, An WM, Tian ST, Yu HP, Yang XL, Wang HM, Guo Z. Diagnostic value evaluation of trefoil factors family 3 for the early detection of colorectal cancer. World J Gastroenterol 2017; 23:2159-2167. [PMID: 28405143 PMCID: PMC5374127 DOI: 10.3748/wjg.v23.i12.2159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/10/2017] [Accepted: 03/17/2017] [Indexed: 02/06/2023] Open
Abstract
AIM The purpose of this study was to evaluate the diagnostic value of trefoil factor family 3 (TFF3) for the early detection of colorectal cancer (CC). METHODS Serum TFF3 and carcino-embryonic antigen (CEA) were detected in 527 individuals, including 115 healthy control (HC), 198 colorectal adenoma (CA), and 214 CC individuals in the training group. RESULTS Serum TFF3 showed no significant correlation with age, gender, or tumor location but showed significant correlation with the tumor stage. Serum TFF3 in the CC group was significantly higher than in the HC or CA group. The AUC values of TFF3 for discriminating between HC and CC and between CA and CC were 0.930 (0.903, 0.958) and 0.834 (0.796, 0.873). A multivariate model combining TFF3 and CEA was built. Compared to TFF3 or CEA alone, the multivariate model showed significant improvement (P < 0.001). For discriminating between HC and CC, HC and early stage CC, HC and advanced stage CC, CA and CC, CA and early stage CC, and CA and advanced stage CC in the training group, the sensitivities were 92.99%, 91.46%, 93.18%, 73.83%, 76.83%, and 81.82%, and the specificities were 91.30%, 91.30%, 93.91%, 88.38%, 77.27%, and 88.38%, respectively. After validation, the sensitivities were 89.39%, 85.71%, 90.79%, 72.73%, 71.43%, and 78.95%, and the specificities were 87.85%, 87.85%, 2.52%, 87.85%, 80.77%, and 87.50%, respectively. CONCLUSION The multivariate diagnostic model that included TFF3 and CEA showed significant improvement over the conventional biomarker CEA and might provide a potential method for the early detection of CC.
Collapse
|