1
|
Wei J, Liu Q, Yuen HY, Lam ACH, Jiang Y, Yang Y, Liu Y, Zhao X, Xiao L. Gut-bone axis perturbation: Mechanisms and interventions via gut microbiota as a primary driver of osteoporosis. J Orthop Translat 2025; 50:373-387. [PMID: 40171106 PMCID: PMC11960541 DOI: 10.1016/j.jot.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/27/2024] [Accepted: 11/12/2024] [Indexed: 04/03/2025] Open
Abstract
A growing number of studies have highlighted the significance of human gut microbiota (GM) as a potential target for osteoporosis. In this review, we discuss the effect of GM to bone metabolism focusing on two aspects: the local alterations of the human gut permeability that modify how the GM interact with the gut-bone axis (e.g., intestinal leakage, nutrient absorption), and the alterations of the GM itself (e.g., changes in microbiota metabolites, immune secretion, hormones) that modify the events of the gut-bone axis. We then classify these changes as possible therapeutic targets of bone metabolism and highlight some associated promising microbiome-based therapies. We also extend our discussions into combinatorial treatments that incorporate conservative treatments, such as exercise. We anticipate our review can provide an overview of the current pathophysiological and therapeutic paradigms of the gut-bone axis, as well as the prospects of ongoing clinical trials for readers to gain further insights into better microbiome-based treatments to osteoporosis and other bone-degenerative diseases. The translational potential of this article: This paper reviewed the potential links between gut microbiota and osteoporosis, as well as the prospective therapeutic avenues targeting gut microbiota for osteoporosis management, presenting a thorough and comprehensive literature review.
Collapse
Affiliation(s)
- Jingyuan Wei
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Qi Liu
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Ho-Yin Yuen
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Avery Chik-Him Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yuanyuan Jiang
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| | - Yuhe Yang
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Yaxiong Liu
- Jihua Laboratory, Foshan, Guangdong, 528000, China
| | - Xin Zhao
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, Jiangsu, 215600, China
| |
Collapse
|
2
|
Investigating Key Targets of Dajianzhong Decoction for Treating Crohn’s Disease Using Weighted Gene Co-Expression Network. Processes (Basel) 2022. [DOI: 10.3390/pr11010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Background: Crohn’s disease (CD) is an inflammatory bowel disease, cases of which have substantially increased in recent years. The classical formula Dajianzhong decoction (DD, Japanese: Daikenchuto) is often used to treat CD, but few studies have evaluated related therapeutic mechanisms. In this study, we investigated the potential targets and mechanisms of DD used for treating CD at the molecular level through the weighted gene co-expression network. Methods: The main chemical components of the three DD herbs (Zanthoxylum bungeanum Maxim., Zingiber officinale (Willd.) Rosc., and Ginseng Radix et Rhizoma) were searched for using the HERB database. The targets for each component were identified using the SwissTargetPrediction and HERB databases, whereas the disease targets for CD were retrieved from the GeneCards and DisGeNET databases. The functional enrichment analysis was performed on the common targets of DD and CD. High-throughput sequencing data for CD patients were retrieved from the Gene Expression Omnibus database, and WGCNA was performed to identify the key targets. The association between the key targets and DD ingredients was verified using molecular docking. Results: By analyzing the interaction targets between DD and CD, 196 overlapping genes were identified. The enrichment results indicated that the PI3K-AKT, TNF, MAPK, and IL-17 signaling pathways influenced the mechanism of action of DD in counteracting CD. Combined with WGCNA, four differentially expressed genes (SLC6A4, NOS2, SHBG, and ABCB1) and their corresponding 24 compounds were closely related to the occurrence of CD. Conclusions: By integrating gene co-expression network analysis, this study preliminarily reveals the internal molecular mechanism of DD in treating CD from a systematic perspective, validated by molecular docking. However, these findings require further validation.
Collapse
|
3
|
González Delgado S, Garza-Veloz I, Trejo-Vazquez F, Martinez-Fierro ML. Interplay between Serotonin, Immune Response, and Intestinal Dysbiosis in Inflammatory Bowel Disease. Int J Mol Sci 2022; 23:ijms232415632. [PMID: 36555276 PMCID: PMC9779345 DOI: 10.3390/ijms232415632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Inflammatory Bowel Disease (IBD) is a chronic gastrointestinal disorder characterized by periods of activity and remission. IBD includes Crohn's disease (CD) and ulcerative colitis (UC), and even though IBD has not been considered as a heritable disease, there are genetic variants associated with increased risk for the disease. 5-Hydroxytriptamine (5-HT), or serotonin, exerts a wide range of gastrointestinal effects under both normal and pathological conditions. Furthermore, Serotonin Transporter (SERT) coded by Solute Carrier Family 6 Member 4 (SLC6A4) gene (located in the 17q11.1-q12 chromosome), possesses genetic variants, such as Serotonin Transporter Gene Variable Number Tandem Repeat in Intron 2 (STin2-VNTR) and Serotonin-Transporter-linked promoter region (5-HTTLPR), which have an influence over the functionality of SERT in the re-uptake and bioavailability of serotonin. The intestinal microbiota is a crucial actor in normal human gut physiology, exerting effects on serotonin, SERT function, and inflammatory processes. As a consequence of abnormal serotonin signaling and SERT function under these inflammatory processes, the use of selective serotonin re-uptake inhibitors (SSRIs) has been seen to improve disease activity and extraintestinal manifestations, such as depression and anxiety. The aim of this study is to integrate scientific data linking the intestinal microbiota as a regulator of gut serotonin signaling and re-uptake, as well as its role in the pathogenesis of IBD. We performed a narrative review, including a literature search in the PubMed database of both review and original articles (no date restriction), as well as information about the SLC6A4 gene and its genetic variants obtained from the Ensembl website. Scientific evidence from in vitro, in vivo, and clinical trials regarding the use of selective serotonin reuptake inhibitors as an adjuvant therapy in patients with IBD is also discussed. A total of 194 articles were used between reviews, in vivo, in vitro studies, and clinical trials.
Collapse
|
4
|
Xu Z, Zhang X, Wang W, Zhang D, Ma Y, Zhang D, Chen M. Fructus Mume (Wu Mei) Attenuates Acetic Acid-Induced Ulcerative Colitis by Regulating Inflammatory Cytokine, Reactive Oxygen Species, and Neuropeptide Levels in Model Rats. J Med Food 2022; 25:389-401. [PMID: 35438553 DOI: 10.1089/jmf.2021.k.0155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic idiopathic inflammatory disorder of the large intestine. Fructus mume (FM), a natural food with nutritive and pharmaceutical value, has demonstrated therapeutic efficacy against UC. In this study, we investigated the protective effects and mechanisms of FM against UC. We induced UC in rats with 4% (v/v) acetic acid (AA), orally administered 0.7 or 0.325 g/kg FM and 0.3 g/kg sulfasalazine (SASP) for 7 days, and explored the responses the drugs elicited in the rats. We assessed the general conditions of the rats by the disease active index. We evaluated colon tissue damage macroscopically and by Hematoxylin & Eosin, Alcian Blue-periodic acid-Schiff, and Masson's staining, and explored the potential mechanisms of FM on inflammation, oxidative stress, and neuropeptides by measuring TNF-α, IL-6, IL-8, IL-10, MMP9, CXCR-1, SOD, GSH-px, MDA, ROS, SIRT3, SP, VIP, ghrelin, and 5-HT. FM treatment significantly attenuated colon damage and submucosal fibrosis compared with the model. It lowered serum proinflammatory TNF-α, IL-8, and colonic MMP9 and CXCR-1, and raised serum anti-inflammatory IL-10 levels. FM upregulated the antioxidant enzymes SOD, GSH-px, and SITR3 protein but inhibited ROS and MDA production. It downregulated colonic SP, VIP, ghrelin, and 5-HT. The beneficial effects of FM might be dose dependent. Around 0.7 g/kg FM and SASP displayed similar efficacy for treating AA-induced colitis in rats. Our results provide empirical evidence that FM protects against AA-induced UC in rats via anti-inflammatory and antioxidant mechanisms, and regulates neuropeptides; thus, FM may be a promising, safe, and efficacious alternative therapy for UC, if its efficacy can be confirmed in human trials.
Collapse
Affiliation(s)
- Zongying Xu
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xueli Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wenya Wang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Di Zhang
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yan Ma
- Department of Pathophysiology and Allergy Research, Center of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Dongmei Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Meng Chen
- Department of Clinical Foundation of Chinese Medicine, College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Yaghoubfar R, Behrouzi A, Ashrafian F, Shahryari A, Moradi HR, Choopani S, Hadifar S, Vaziri F, Nojoumi SA, Fateh A, Khatami S, Siadat SD. Modulation of serotonin signaling/metabolism by Akkermansia muciniphila and its extracellular vesicles through the gut-brain axis in mice. Sci Rep 2020; 10:22119. [PMID: 33335202 PMCID: PMC7747642 DOI: 10.1038/s41598-020-79171-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/04/2020] [Indexed: 12/13/2022] Open
Abstract
Several studies have reported that the host-microbe interactions in the gut modulate the host serotonin or 5-hydroxytryptamine (5-HT) system. Here, we evaluated the effects of Akkermansia muciniphila and its extracellular vesicles (EVs) on genes pertaining to the serotonergic system in the colon and hippocampus of mice. Male C57BL/6J mice were administered viable A. muciniphila and its EVs for 4 weeks. The serotonin levels in the colon, hippocampus, and serum of mice, as well as the human colon carcinoma cells (Caco-2), were measured by ELISA assays. Also, the effects of A. muciniphila and its EVs on the expression of serotonin system genes in the colon and hippocampus were examined. A. muciniphila and its EVs may have a biological effect on the induction of serotonin levels in the colon and hippocampus of mice. Also, EVs increased the serotonin level in the Caco-2 cell line. In contrast, both treatments decreased the serotonin level in the serum. Both the bacterium and its EVs had significant effects on the mRNA expression of genes, involved in serotonin signaling/metabolism in the colon and hippocampus of mice. Moreover, A. muciniphila and its EVs affected the mRNA expression of inflammatory cytokines (Il-10 and Tnf-α) in the colon, however, there is no significant difference in inflammatory cell infiltrate in the histopathology of the colon. The presence of A. muciniphila and its EVs in the gut promotes serotonin concentration, they also affect serotonin signaling/metabolism through the gut-brain axis and may be considered in new therapeutic strategies to ameliorate serotonin-related disorders.
Collapse
Affiliation(s)
- Rezvan Yaghoubfar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Ava Behrouzi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Ashrafian
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Arefeh Shahryari
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Hamid Reza Moradi
- Department of Basic sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
| | - Samira Choopani
- Department of Physiology and Pharmacology, Pasteur Institute of Iran, Tehran, Iran
| | - Shima Hadifar
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Farzam Vaziri
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Ali Nojoumi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abolfazl Fateh
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Shohreh Khatami
- Department of Biochemistry, Pasteur Institute of Iran, Tehran, Iran.
| | - Seyed Davar Siadat
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Holton NW, Singhal M, Kumar A, Ticho AL, Manzella CR, Malhotra P, Jarava D, Saksena S, Dudeja PK, Alrefai WA, Gill RK. Hepatocyte nuclear factor-4α regulates expression of the serotonin transporter in intestinal epithelial cells. Am J Physiol Cell Physiol 2020; 318:C1294-C1304. [PMID: 32348179 PMCID: PMC7311735 DOI: 10.1152/ajpcell.00477.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 12/20/2022]
Abstract
The serotonin transporter (SERT) functions to regulate the availability of serotonin (5-HT) in the brain and intestine. An intestine-specific mRNA variant arising from a unique transcription start site and alternative promoter in the SERT gene has been identified (iSERT; spanning exon 1C). A decrease in SERT is implicated in several gut disorders, including inflammatory bowel diseases (IBD). However, little is known about mechanisms regulating the iSERT variant, and a clearer understanding is warranted for targeting SERT for the treatment of gut disorders. The current studies examined the expression of iSERT across different human intestinal regions and investigated its regulation by HNF4α (hepatic nuclear factor-4α), a transcription factor important for diverse cellular functions. iSERT mRNA abundance was highest in the human ileum and Caco-2 cell line. iSERT mRNA expression was downregulated by loss of HNF4α (but not HNF1α, HNF1β, or FOXA1) in Caco-2 cells. Overexpression of HNF4α increased iSERT mRNA concomitant with an increase in SERT protein. Progressive promoter deletion and site-directed mutagenesis revealed that the HNF4α response element spans nucleotides -1,163 to -1150 relative to the translation start site. SERT mRNA levels in the intestine were drastically reduced in the intestine-specific HNF4α-knockout mice relative to HNF4αFL/FL mice. Both HNF4α and SERT mRNA levels were also downregulated in mouse model of ileitis (SAMP) compared with AKR control mice. These results establish the transcriptional regulation of iSERT at the gut-specific internal promoter (hSERTp2) and have identified HNF4α as a critical modulator of basal SERT expression in the intestine.
Collapse
Affiliation(s)
- Nathaniel W Holton
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Megha Singhal
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Anoop Kumar
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Alexander L Ticho
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Christopher R Manzella
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, Illinois
| | - Pooja Malhotra
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - David Jarava
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| | - Seema Saksena
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Pradeep K Dudeja
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Waddah A Alrefai
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
- Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois
| | - Ravinder K Gill
- Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
7
|
Gazouli M, Dovrolis N, Franke A, Spyrou GM, Sechi LA, Kolios G. Differential genetic and functional background in inflammatory bowel disease phenotypes of a Greek population: a systems bioinformatics approach. Gut Pathog 2019; 11:31. [PMID: 31249629 PMCID: PMC6570833 DOI: 10.1186/s13099-019-0312-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/30/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Crohn's disease (CD) and Ulcerative colitis (UC) are the two main entities of inflammatory bowel disease (IBD). Previous works have identified more than 200 risk factors (including loci and signaling pathways) in populations of predominantly European ancestry. Our study was conducted on an extended population-specific cohort of 573 Greek IBD patients (364 CD and 209 UC) and 445 controls. AIMS To highlight the different genetic and functional background of IBD and its phenotypes, utilizing contemporary systems bioinformatics methodologies. METHODS Disease-associated SNPs, obtained via our own 89 loci IBD risk GWAS panel, were detected with the whole genome association analysis toolset PLINK. These SNPs were used as input for 2 novel and different pathway analysis methods to detect functional interactions. Specifically, PathwayConnector was used to create complementary networks of interacting pathways whereas; the online database of protein interactions STRING provided protein-protein association networks and their derived pathways. Network analyses metrics were employed to identify proteins with high significance and subsequently to rank the signaling pathways those participate in. RESULTS The reported complementary pathway and enriched protein-protein association networks reveal several novel and well-known key players, in the functional background of IBD like Toll-like receptor, TNF, Jak-STAT, PI3K-Akt, T cell receptor, Apoptosis, MAPK and B cell receptor signaling pathways. IBD subphenotypes are found to have distinct genetic and functional profiles which can contribute to their accurate identification and classification. As a secondary result we identify an extended network of diseases with common molecular background to IBD. CONCLUSIONS IBD's burden on the quality of life of patients and intricate functional background presents us constantly with new challenges. Our data and methodology provide researchers with new insights to a specific population, but also, to possible differentiation markers of disease classification and progression. This work, not only provides new insights into the interplay among IBD risk variants and their related signaling pathways, elucidates the mechanisms underlying IBD and its clinical sequelae, but also, introduces a generalized bioinformatics-based methodology which can be applied to studies of different disorders.
Collapse
Affiliation(s)
- Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Michalakopoulou 176, 11527 Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - George M. Spyrou
- Bioinformatics ERA Chair, The Cyprus Institute of Neurology and Genetics, Nicosia, Cyprus
| | - Leonardo A. Sechi
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Xanthi, Greece
| |
Collapse
|
8
|
Mosso E, Boano V, Grassini M, Battaglia E, Pellicano R. Microscopic colitis: a narrative review with clinical approach. MINERVA GASTROENTERO 2019; 65:53-62. [PMID: 30486642 DOI: 10.23736/s1121-421x.18.02539-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Microscopic colitis (MC) is diagnosed in presence of microscopic alterations of colonic mucosa, in patients without macroscopic lesions who referred for chronic diarrhea. The two types of MC are lymphocytic colitis (LC) and collagenous colitis (CC), but it is unclear whether these are the different expression of one unique disease or if they are distinct conditions. Today, although MC represents a consistent health problem, being responsible for a large part of gastroenterological consultations for diarrhea, it remains often underestimated. The detailed pathogenesis of MC has not been determined yet. Probably, it is the result of an interaction between individual, environmental and genetic factors. The most relevant risk factor for the development of MC is the use of certain drugs (such as non-steroidal anti-inflammatory drugs [NSAIDs], proton pump inhibitors [PPIs], selective serotonin reuptake inhibitors, beta-blockers, statins). Smoking is another relevant factor reported as associated with the development of MC. Diagnosis needs the execution of a colonoscopy in patients complaining about chronic diarrhea and abdominal pain. The crucial role is played by histology: MC is characterized by the presence of colonic mucosal lymphocytic infiltrate, with intraepithelial lymphocytes ≥20 per 100 enteric surface cells, in CC there is a typical subepithelial collagen layer, whose thickness is ≥10 μm. We carried out a review of the current literature to rule out what is new on epidemiology, diagnosis and therapy of MC.
Collapse
Affiliation(s)
- Elena Mosso
- Department of Gastroenterology, University of Turin, Turin, Italy
| | - Valentina Boano
- Department of Gastroenterology, University of Turin, Turin, Italy
| | - Mario Grassini
- Section of Physiopathology and Manometry, Unit of Gastroenterology and Endoscopy, Cardinal Massaja Hospital, Asti, Italy
| | - Edda Battaglia
- Section of Physiopathology and Manometry, Unit of Gastroenterology and Endoscopy, Cardinal Massaja Hospital, Asti, Italy
| | | |
Collapse
|
9
|
Stavely R, Fraser S, Sharma S, Rahman AA, Stojanovska V, Sakkal S, Apostolopoulos V, Bertrand P, Nurgali K. The Onset and Progression of Chronic Colitis Parallels Increased Mucosal Serotonin Release via Enterochromaffin Cell Hyperplasia and Downregulation of the Serotonin Reuptake Transporter. Inflamm Bowel Dis 2018; 24:1021-1034. [PMID: 29668991 DOI: 10.1093/ibd/izy016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) has been linked with several inflammation-associated intestinal diseases, including ulcerative colitis (UC). The largest pool of 5-HT in the body is in enterochromaffin (EC) cells located throughout the intestinal tract. EC cells are mechanosensitive and detect noxious stimuli, inducing secretion of 5-HT, which plays an important role in enteric reflexes and immunomodulation. In this study, we evaluated intestinal 5-HT levels in the Winnie mouse model of spontaneous chronic colitis, which closely replicates UC. METHODS Real-time electrochemical recordings of 5-HT oxidation currents were obtained from ex vivo preparations of jejunum, ileum, proximal, and distal colon from Winnie (5-25 weeks old) and age matched C57BL/6 mice. EC cells were examined by immunohistochemistry, and the gene expression of tryptophan hydroxylase 1 (5-HT synthesis) and the serotonin reuptake transporter (SERT) were determined by quantitative Real-Time Polymerase Chain Reaction (RT-qPCR). RESULTS Compression-evoked and basal 5-HT concentrations were elevated in the distal and proximal colon of Winnie mice. EC cell hyperplasia and downregulation of SERT on the transcriptional level were identified as mechanisms underlying increased levels of 5-HT. Increase in mucosal 5-HT release was observed at the onset of disease at 7-14 weeks, confirmed by disease activity scores. Furthermore, increases in 5-HT levels and progression of disease activity correlated linearly with age, but not sex. CONCLUSIONS Our findings in the Winnie mouse model of spontaneous chronic colitis demonstrate for the first time that the onset and progression of chronic UC-like intestinal inflammation is associated with increased 5-HT levels in the colonic mucosa.
Collapse
Affiliation(s)
- Rhian Stavely
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Sarah Fraser
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Shilpa Sharma
- Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Hudson Institute of Medical Research; Monash Health Translation Precinct, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- Centre for Chronic Disease; College of Health and Biomedicine, Victoria University, Melbourne, Victoria, Australia
| | - Paul Bertrand
- School of Health and Biomedical Sciences, Royal Melbourne Institute of Technology University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University; Western Centre for Health, Research and Education, Sunshine Hospital, Melbourne, Victoria, Australia.,Department of Medicine, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute of Musculoskeletal Science (AIMSS), Western Health
| |
Collapse
|
10
|
Coates MD, Tekin I, Vrana KE, Mawe GM. Review article: the many potential roles of intestinal serotonin (5-hydroxytryptamine, 5-HT) signalling in inflammatory bowel disease. Aliment Pharmacol Ther 2017; 46:569-580. [PMID: 28737264 DOI: 10.1111/apt.14226] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 04/10/2017] [Accepted: 06/24/2017] [Indexed: 12/19/2022]
Abstract
BACKGROUND Serotonin (5-hydroxytryptamine, 5-HT) is an important mediator of every major gut-related function. Recent investigations also suggest that 5-HT can influence the development and severity of inflammation within the gut, particularly in the setting of inflammatory bowel disease (IBD). AIM To review the roles that the intestinal serotonin signalling system plays in gut function, with a specific focus on IBD. METHODS We reviewed manuscripts from 1952 to 2017 that investigated and discussed roles for 5-HT signalling in gastrointestinal function and IBD, as well as the influence of inflammation on 5-HT signalling elements within the gut. RESULTS Inflammation appears to affect every major element of intestinal 5-HT signalling, including 5-HT synthesis, release, receptor expression and reuptake capacity. Importantly, many studies (most utilising animal models) also demonstrate that modulation of selective serotonergic receptors (via agonism of 5-HT4 R and antagonism of 5-HT3 R) or 5-HT signal termination (via serotonin reuptake inhibitors) can alter the likelihood and severity of intestinal inflammation and/or its complicating symptoms. However, there are few human studies that have studied these relationships in a targeted manner. CONCLUSIONS Insights discussed in this review have strong potential to lead to new diagnostic and therapeutic tools to improve the management of IBD and other related disorders. Specifically, strategies that focus on modifying the activity of selective serotonin receptors and reuptake transporters in the gut could be effective for controlling disease activity and/or its associated symptoms. Further studies in humans are required, however, to more completely understand the pathophysiological mechanisms underlying the roles of 5-HT in this setting.
Collapse
Affiliation(s)
- M D Coates
- Department of Medicine, Division of Gastroenterology & Hepatology, Penn State Hershey Medical Center, Hershey, PA, USA
| | - I Tekin
- Neuroscience Institute, University of California at Santa Barbara, Santa Barbara, CA, USA
| | - K E Vrana
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - G M Mawe
- Department of Neurological Sciences, University of Vermont College of Medicine, Burlington, VT, USA
| |
Collapse
|
11
|
Verhaegh BPM, de Vries F, Masclee AAM, Keshavarzian A, de Boer A, Souverein PC, Pierik MJ, Jonkers DMAE. High risk of drug-induced microscopic colitis with concomitant use of NSAIDs and proton pump inhibitors. Aliment Pharmacol Ther 2016; 43:1004-13. [PMID: 26956016 DOI: 10.1111/apt.13583] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/02/2015] [Accepted: 02/17/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Microscopic colitis (MC) is a chronic bowel disorder characterised by watery diarrhoea. Nonsteroidal anti-inflammatory drugs (NSAIDs), proton pump inhibitors (PPIs), selective serotonin reuptake inhibitors (SSRIs) and statins have been associated with MC. However, underlying mechanisms remain unclear. AIM To study the association between exposure to these drugs and MC, with attention to time of exposure, duration, dosage and combined exposure, and to test hypotheses on underlying pharmacological mechanisms. METHODS A case-control study was conducted using the British Clinical Practice Research Datalink. MC cases (1992-2013) were matched to MC-naive controls on age, sex and GP practice. Drug exposure was stratified according to time of exposure, duration of exposure or dosage. Conditional logistic regression analysis was applied to calculate adjusted odds ratios (AORs). RESULTS In total, 1211 cases with MC were matched to 6041 controls. Mean age was 63.4 years, with 73.2% being female. Current use of NSAIDs (AOR 1.86, 95% CI 1.39-2.49), PPIs (AOR 3.37, 95% CI 2.77-4.09) or SSRIs (AOR 2.03, 95% CI 1.58-2.61) was associated with MC compared to never or past use. Continuous use for 4-12 months further increased the risk of MC. Strongest associations (fivefold increased risk) were observed for concomitant use of PPIs and NSAIDs. Statins were not associated with MC. CONCLUSIONS Current exposure to NSAIDs, PPIs or SSRIs and prolonged use for 4-12 months increased the risk of MC. Concomitant use of NSAIDs and PPIs showed the highest risk of MC. Acid suppression related dysbiosis may contribute to the PPI effect, which may be exacerbated by NSAID-related side-effects.
Collapse
Affiliation(s)
- B P M Verhaegh
- Division of Gastroenterology - Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - F de Vries
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
- Clinical Pharmacology & Toxicology, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A A M Masclee
- Division of Gastroenterology - Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - A Keshavarzian
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
- Division of Digestive Diseases and Nutrition, Rush University, Chicago, IL, USA
| | - A de Boer
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
| | - P C Souverein
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht, The Netherlands
| | - M J Pierik
- Division of Gastroenterology - Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - D M A E Jonkers
- Division of Gastroenterology - Hepatology, Department of Internal Medicine, Maastricht University Medical Center+, Maastricht, The Netherlands
- NUTRIM, School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| |
Collapse
|