1
|
Akincilar SC, Chan CHT, Ng QF, Fidan K, Tergaonkar V. Non-canonical roles of canonical telomere binding proteins in cancers. Cell Mol Life Sci 2021; 78:4235-4257. [PMID: 33599797 PMCID: PMC8164586 DOI: 10.1007/s00018-021-03783-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/28/2020] [Accepted: 01/29/2021] [Indexed: 02/06/2023]
Abstract
Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.
Collapse
Affiliation(s)
- Semih Can Akincilar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Claire Hian Tzer Chan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Qin Feng Ng
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Kerem Fidan
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore
| | - Vinay Tergaonkar
- Division of Cancer Genetics and Therapeutics, Laboratory of NFκB Signaling, Institute of Molecular and Cell Biology (IMCB), A*STAR (Agency for Science, Technology and Research), Proteos, 61, Biopolis Drive, Singapore, 138673, Singapore.
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore.
| |
Collapse
|
2
|
Wang X, Ge X, Wang H, Huang J, Song Q, Xu C, Jiang Z, Su J, Wang H, Tan L, Jiang D, Hou Y. SOX2 amplification and chromosome 3 gain significantly impact prognosis in esophageal squamous cell carcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:321. [PMID: 33708948 PMCID: PMC7944334 DOI: 10.21037/atm-20-1290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background We aimed to investigate the prevalence and prognostic role of Sex determining region Y-box 2 (SOX2) amplification and expression in surgically resected esophageal squamous cell carcinoma (ESCC). Methods We evaluated 450 ESCC samples using fluorescence in-situ hybridization and immunohistochemistry for SOX2 gene amplification and protein expression, respectively. The relationships of gene status with various clinicopathological characteristics and patient survival were statistically analyzed. Results SOX2 amplifications and chromosome 3 gain were observed in 4.4% and 12.9% of patients with ESCC. SOX2 amplification was associated with later clinical stage, and chromosome 3 gain was associated with earlier clinical stage (P=0.025). Low and high SOX2 expression were found in 28.9% and 24.7% of cases, respectively. SOX2 expression was significantly associated with gene copy number variation (P=0.007). SOX2 amplification was associated with a significantly shorter disease-free survival (DFS) or overall survival (OS). However, chromosome 3 gain was associated with a significantly longer DFS or OS (P<0.001). Multivariate analysis using the Cox proportional hazard model indicated that SOX2 amplification was an independently poorer prognostic factor (DFS, P<0.001, HR 2.638, 95% CI, 1.581–4.403; OS, P<0.001, HR 2.608, 95% CI, 1.562–4.355), along with pathology tumor-node-metastasis (pTNM) stage, whereas chromosome 3 gain was an independently better prognostic factor (DFS, P=0.003, HR 0.486, 95% CI, 0.300–0.789; OS, P=0.003, HR 0.474, 95% CI, 0.289–0.779) for ESCC. Conclusions This is the first study wherein SOX2 amplification and chromosome 3 gain in a large cohort of ESCC were evaluated. SOX2 amplification is an independently poorer prognostic factor, whereas chromosome 3 gain is an independently favorable prognostic factor. Our results suggest that SOX2 amplification and chromosome 3 gain are potential biomarkers related to tumor progression and risk stratification in ESCC.
Collapse
Affiliation(s)
- Xin Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaowen Ge
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Haixing Wang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jie Huang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qi Song
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhengzeng Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieakesu Su
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Wang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lijie Tan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dongxian Jiang
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pathology, School of Basic Medical Sciences & Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Pathology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|