1
|
Ionita-Radu F, Patoni C, Nancoff AS, Marin FS, Gaman L, Bucurica A, Socol C, Jinga M, Dutu M, Bucurica S. Berberine Effects in Pre-Fibrotic Stages of Non-Alcoholic Fatty Liver Disease-Clinical and Pre-Clinical Overview and Systematic Review of the Literature. Int J Mol Sci 2024; 25:4201. [PMID: 38673787 PMCID: PMC11050387 DOI: 10.3390/ijms25084201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/07/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic liver conditions, and its progression is marked by evolution to non-alcoholic steatosis, steatohepatitis, cirrhosis related to non-alcoholic steatohepatitis, and the potential occurrence of hepatocellular carcinoma. In our systematic review, we searched two databases, Medline (via Pubmed Central) and Scopus, from inception to 5 February 2024, and included 73 types of research (nine clinical studies and 64 pre-clinical studies) from 2854 published papers. Our extensive research highlights the impact of Berberine on NAFLD pathophysiology mechanisms, such as Adenosine Monophosphate-Activated Protein Kinase (AMPK), gut dysbiosis, peroxisome proliferator-activated receptor (PPAR), Sirtuins, and inflammasome. Studies involving human subjects showed a measurable reduction of liver fat in addition to improved profiles of serum lipids and hepatic enzymes. While current drugs for NAFLD treatment are either scarce or still in development or launch phases, Berberine presents a promising profile. However, improvements in its formulation are necessary to enhance the bioavailability of this natural substance.
Collapse
Affiliation(s)
- Florentina Ionita-Radu
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Cristina Patoni
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Andreea Simona Nancoff
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Flavius-Stefan Marin
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
| | - Laura Gaman
- Department of Biochemistry, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Ana Bucurica
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Calin Socol
- Faculty of General Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (A.B.); (C.S.)
| | - Mariana Jinga
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| | - Madalina Dutu
- Department of Anesthesiology and Intensive Care, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Department of Anesthesiology and Intensive Care, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania
| | - Sandica Bucurica
- Department of Gastroenterology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania; (F.I.-R.); (C.P.); (F.-S.M.); (S.B.)
- Department of Gastroenterology, Dr. Carol Davila Central Military Emergency University Hospital, 010242 Bucharest, Romania;
| |
Collapse
|
2
|
Nguyen VD, Hughes TR, Zhou Y. From complement to complosome in non-alcoholic fatty liver disease: When location matters. Liver Int 2024; 44:316-329. [PMID: 38010880 DOI: 10.1111/liv.15796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/29/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a growing public health threat and becoming the leading cause of liver transplantation. Nevertheless, no approved specific treatment is currently available for NAFLD. The pathogenesis of NAFLD is multifaceted and not yet fully understood. Accumulating evidence suggests a significant role of the complement system in the development and progression of NAFLD. Here, we provide an overview of the complement system, incorporating the novel concept of complosome, and summarise the up-to-date evidence elucidating the association between complement dysregulation and the pathogenesis of NAFLD. In this process, the extracellular complement system is activated through various pathways, thereby directly contributing to, or working together with other immune cells in the disease development and progression. We also introduce the complosome and assess the evidence that implicates its potential influence in NAFLD through its direct impact on hepatocytes or non-parenchymal liver cells. Additionally, we expound upon how complement system and the complosome may exert their effects in relation with hepatic zonation in NAFLD. Furthermore, we discuss the potential therapeutic implications of targeting the complement system, extracellularly and intracellularly, for NAFLD treatment. Finally, we present future perspectives towards a better understanding of the complement system's contribution to NAFLD.
Collapse
Affiliation(s)
- Van-Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - Timothy R Hughes
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
- Systems Immunity Research Institute, Cardiff University, Cardiff, UK
| |
Collapse
|
3
|
Desmond LW, Holbrook EM, Wright CTO, Zambrano CA, Stamper CE, Bohr AD, Frank MG, Podell BK, Moreno JA, MacDonald AS, Reber SO, Hernández-Pando R, Lowry CA. Effects of Mycobacterium vaccae NCTC 11659 and Lipopolysaccharide Challenge on Polarization of Murine BV-2 Microglial Cells. Int J Mol Sci 2023; 25:474. [PMID: 38203645 PMCID: PMC10779110 DOI: 10.3390/ijms25010474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/15/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Previous studies have shown that the in vivo administration of soil-derived bacteria with anti-inflammatory and immunoregulatory properties, such as Mycobacterium vaccae NCTC 11659, can prevent a stress-induced shift toward an inflammatory M1 microglial immunophenotype and microglial priming in the central nervous system (CNS). It remains unclear whether M. vaccae NCTC 11659 can act directly on microglia to mediate these effects. This study was designed to determine the effects of M. vaccae NCTC 11659 on the polarization of naïve BV-2 cells, a murine microglial cell line, and BV-2 cells subsequently challenged with lipopolysaccharide (LPS). Briefly, murine BV-2 cells were exposed to 100 µg/mL whole-cell, heat-killed M. vaccae NCTC 11659 or sterile borate-buffered saline (BBS) vehicle, followed, 24 h later, by exposure to 0.250 µg/mL LPS (Escherichia coli 0111: B4; n = 3) in cell culture media vehicle (CMV) or a CMV control condition. Twenty-four hours after the LPS or CMV challenge, cells were harvested to isolate total RNA. An analysis using the NanoString platform revealed that, by itself, M. vaccae NCTC 11659 had an "adjuvant-like" effect, while exposure to LPS increased the expression of mRNAs encoding proinflammatory cytokines, chemokine ligands, the C3 component of complement, and components of inflammasome signaling such as Nlrp3. Among LPS-challenged cells, M. vaccae NCTC 11659 had limited effects on differential gene expression using a threshold of 1.5-fold change. A subset of genes was assessed using real-time reverse transcription polymerase chain reaction (real-time RT-PCR), including Arg1, Ccl2, Il1b, Il6, Nlrp3, and Tnf. Based on the analysis using real-time RT-PCR, M. vaccae NCTC 11659 by itself again induced "adjuvant-like" effects, increasing the expression of Il1b, Il6, and Tnf while decreasing the expression of Arg1. LPS by itself increased the expression of Ccl2, Il1b, Il6, Nlrp3, and Tnf while decreasing the expression of Arg1. Among LPS-challenged cells, M. vaccae NCTC 11659 enhanced LPS-induced increases in the expression of Nlrp3 and Tnf, consistent with microglial priming. In contrast, among LPS-challenged cells, although M. vaccae NCTC 11659 did not fully prevent the effects of LPS relative to vehicle-treated control conditions, it increased Arg1 mRNA expression, suggesting that M. vaccae NCTC 11659 induces an atypical microglial phenotype. Thus, M. vaccae NCTC 11659 acutely (within 48 h) induced immune-activating and microglial-priming effects when applied directly to murine BV-2 microglial cells, in contrast to its long-term anti-inflammatory and immunoregulatory effects observed on the CNS when whole-cell, heat-killed preparations of M. vaccae NCTC 11659 were given peripherally in vivo.
Collapse
Affiliation(s)
- Luke W. Desmond
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Evan M. Holbrook
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Caelan T. O. Wright
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Cristian A. Zambrano
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Christopher E. Stamper
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Adam D. Bohr
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
| | - Matthew G. Frank
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Brendan K. Podell
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA;
| | - Julie A. Moreno
- Prion Research Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Center for Healthy Aging, Colorado State University, Fort Collins, CO 80523, USA
| | - Andrew S. MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester M13 9NT, UK;
| | - Stefan O. Reber
- Laboratory for Molecular Psychosomatics, Department of Psychosomatic Medicine and Psychotherapy, Ulm University Medical Center, 89081 Ulm, Germany;
| | - Rogelio Hernández-Pando
- Sección de Patología Experimental, Departamento de Patología, Instituto Nacional De Ciencias Médicas Y Nutrición Salvador Zubirán, Ciudad de México 14080, Mexico;
| | - Christopher A. Lowry
- Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO 80309, USA; (L.W.D.); (E.M.H.); (C.T.O.W.); (C.A.Z.); (C.E.S.); (A.D.B.); (M.G.F.)
- Center for Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO 80309, USA
- Center for Microbial Exploration, University of Colorado Boulder, Boulder, CO 80309, USA
- Department of Physical Medicine and Rehabilitation and Center for Neuroscience, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
4
|
Luo Y, Woodie LN, Graff EC, Zhang J, Fowler S, Wang X, Wang X, O'Neill AM, Greene MW. Role of liquid fructose/sucrose in regulating the hepatic transcriptome in a high-fat Western diet model of NAFLD. J Nutr Biochem 2023; 112:109174. [PMID: 36280127 DOI: 10.1016/j.jnutbio.2022.109174] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 08/08/2022] [Accepted: 08/19/2022] [Indexed: 11/07/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD), which ranges from simple steatosis to nonalcoholic steatohepatitis (NASH), is the most common chronic liver disease. Yet, the molecular mechanisms for the progression of steatosis to NASH remain largely undiscovered. Thus, there is a need for identifying specific gene and pathway changes that drive the progression of NAFLD. This study uses high-fat Western diet (HFWD) together with liquid sugar [fructose and sucrose (F/S)] feeding for 12 weeks in mice to induce obesity and examine hepatic transcriptomic changes that occur in NAFLD progression. The combination of a HFWD+F/S in the drinking water exacerbated HFWD-induced obesity, hyperinsulinemia, hyperglycemia, hepatic steatosis, inflammation, and human and murine fibrosis gene set enrichment that is consistent with progression to NASH. RNAseq analysis revealed differentially expressed genes (DEGs) associated with HFWD and HFWD+F/S dietary treatments compared to Chow-fed mice. However, liquid sugar consumption resulted in a unique set of hepatic DEGs in HFWD+F/S-fed mice, which were enriched in the complement and coagulation cascades using network and biological analysis. Cluster analysis identified Orosomucoid (ORM) as a HFWD+F/S upregulated complement and coagulation cascades gene that was also upregulated in hepatocytes treated with TNFα or free fatty acids in combination with hypoxia. ORM expression was found to correlate with NAFLD parameters in obese mice. Taken together, this study examined key genes, biological processes, and pathway changes in the liver of HFWD+F/S mice in an effort to provide insight into the molecular basis for which the addition of liquid sugar promotes the progression of NAFLD.
Collapse
Affiliation(s)
| | | | - Emily C Graff
- Department of Pathobiology; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA
| | | | | | | | - Xu Wang
- Department of Pathobiology; HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, USA
| | | | - Michael W Greene
- Department of Nutritional Sciences; Boshell Metabolic Diseases and Diabetes Program, Auburn University, Auburn, Alabama, USA.
| |
Collapse
|
5
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
6
|
Huang T, Liu Y, Li H, Zhang Y, Kong D, Cui G. β-Glucan ameliorates nonalcoholic steatohepatitis induced by methionine and choline-deficient diet in mice. J Food Biochem 2020; 44:e13408. [PMID: 32713066 DOI: 10.1111/jfbc.13408] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Nonalcoholic steatohepatitis (NASH) is becoming a huge global health problem. Studies showed that β-glucan displayed potent anti-inflammatory and other multi-beneficial pharmacological properties. Thus, the objective of this study was to investigate the effects of β-glucan on NASH mice induced by the MCD diet. After 8 weeks of β-glucan treatments, results showed that β-glucan effectively decreased the serum ALT and AST levels compared with the MCD model. Besides, histopathological results demonstrated that β-glucan significantly attenuated the fat accumulation, steatosis, and inflammation in the liver compared with that of the MCD group. Furthermore, the ER stress-responsive proteins, including GRP78, p-eiF-2α, and p-JNK, were markedly restrained by β-glucan, while ERp57, p-MAPK, and p-Akt were significantly increased after β-glucan treatment. Collectively, our results suggested that β-glucan beneficially resisted NASH induced by the MCD diet. The ER stress response may be involved in the mechanisms of action of β-glucan. PRACTICAL APPLICATIONS: This study is the first to report the hepatoprotective activity of β-glucan against MCD diet-induced NASH in mice, mainly reflecting its ability to ameliorate hepatic lipid accumulation and inflammation, with the mechanism possibly involving mediating the ER stress signaling pathway. Our results suggest that the β-glucan has good application prospects to be used as a raw material in functional foods for the clinical treatment of NASH.
Collapse
Affiliation(s)
- Tianyang Huang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Yahui Liu
- Department of Preventive Medicine, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Huiming Li
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Ying Zhang
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| | - Dezhi Kong
- Chinese Integrative Medicine, Hebei Medical University, Shijiazhuang, China
| | - Guozhen Cui
- Department of Bioengineering, Zhuhai Campus of Zunyi Medical University, Zhuhai, China
| |
Collapse
|
7
|
Blencowe M, Karunanayake T, Wier J, Hsu N, Yang X. Network Modeling Approaches and Applications to Unravelling Non-Alcoholic Fatty Liver Disease. Genes (Basel) 2019; 10:E966. [PMID: 31771247 PMCID: PMC6947017 DOI: 10.3390/genes10120966] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/18/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a progressive condition of the liver encompassing a range of pathologies including steatosis, non-alcoholic steatohepatitis (NASH), cirrhosis, and hepatocellular carcinoma. Research into this disease is imperative due to its rapid growth in prevalence, economic burden, and current lack of FDA approved therapies. NAFLD involves a highly complex etiology that calls for multi-tissue multi-omics network approaches to uncover the pathogenic genes and processes, diagnostic biomarkers, and potential therapeutic strategies. In this review, we first present a basic overview of disease pathogenesis, risk factors, and remaining knowledge gaps, followed by discussions of the need and concepts of multi-tissue multi-omics approaches, various network methodologies and application examples in NAFLD research. We highlight the findings that have been uncovered thus far including novel biomarkers, genes, and biological pathways involved in different stages of NAFLD, molecular connections between NAFLD and its comorbidities, mechanisms underpinning sex differences, and druggable targets. Lastly, we outline the future directions of implementing network approaches to further improve our understanding of NAFLD in order to guide diagnosis and therapeutics.
Collapse
Affiliation(s)
- Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| | - Tilan Karunanayake
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Julian Wier
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Neil Hsu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA; (M.B.); (T.K.); (J.W.); (N.H.)
- Molecular, Cellular, and Integrative Physiology Interdepartmental Program, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
- Interdepartmental Program of Bioinformatics, University of California, Los Angeles, 610 Charles E. Young Drive East, Los Angeles, CA 90095, USA
| |
Collapse
|