1
|
Salama MS, Osman KA, Elbanna R. The Sub-Acute Potential Risk of Oxamyl in Male Albino Rats. ENVIRONMENTAL TOXICOLOGY 2025; 40:774-786. [PMID: 39731506 DOI: 10.1002/tox.24462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/02/2024] [Accepted: 12/08/2024] [Indexed: 12/30/2024]
Abstract
The current study aimed to investigate the sub-acute effects of oxamyl on male Albino rats following oral administration of either 0.031 or 0.31 mg/kg/day for 14 consecutive days. The findings demonstrated that oxamyl produced a significant impact on most of the examined blood profile and biomarkers, along with a significant progressive and discernible alterations in the histology of organs. According to the results obtained, the potential mechanisms by which oxamyl causes its toxic effects on rats are identified as the inflammation indices, the inhibition of transaminases, alkaline phosphatase, and antioxidant enzymes, as well as the production of thiobarbituric acid reactive substances (TBARs) in organs following oxamyl treatment based on histopathological examinations. Due to the substantial genetic similarities between rats and humans, it is therefore anticipated that oxamyl will have comparable detrimental effects on humans.
Collapse
Affiliation(s)
- Maher S Salama
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Khaled A Osman
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Rania Elbanna
- Pesticide Chemistry & Technology Department, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
2
|
Verma M, Garg M, Yadav P, Khan AS, Rahman SS, Ali A, Kamthan M. Modulation of intestinal signal transduction pathways: Implications on gut health and disease. Eur J Pharmacol 2025; 998:177531. [PMID: 40118324 DOI: 10.1016/j.ejphar.2025.177531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 03/23/2025]
Abstract
The gastrointestinal (GI) tract is essential for nutrient absorption and protection against pathogens and toxins. Its epithelial lining undergoes continuous renewal every 3-5 days, driven by intestinal stem cells (ISCs). ISCs are primarily of two types: actively proliferating crypt base columnar cells (CBCs), marked by Lgr5 expression, and quiescent label-retaining cells (+4 LRCs), which act as reserves during stress or injury. Key signaling pathways, such as Wnt/β-catenin, Notch, bone morphogenetic proteins (BMPs), and epidermal growth factor (EGF), are crucial in maintaining epithelial homeostasis. These pathways regulate ISCs proliferation and their differentiation into specialized epithelial cells, including goblet cells, paneth cells, enteroendocrine cells, and enterocytes. Disruptions in ISCs signaling can arise from extrinsic factors (e.g., dietary additives, heavy metals, pathogens) or intrinsic factors (e.g., genetic mutations, metabolic changes). Such disruptions impair tight junction integrity, induce inflammation, and promote gut dysbiosis, often perpetuating a cycle of intestinal dysfunction. Chronic ISCs dysregulation is linked to severe intestinal disorders, including colorectal cancer (CRC) and inflammatory bowel disease (IBD). This review emphasizes the critical role of ISCs in maintaining epithelial renewal and how various factors disrupt their signaling pathways, jeopardizing intestinal health and contributing to diseases. It also underscores the importance of protecting ISCs function to mitigate the risk of inflammation-related disorders. It highlights how understanding these regulatory mechanisms could guide therapeutic strategies for preserving GI tract integrity and treating related conditions.
Collapse
Affiliation(s)
- Muskan Verma
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Manika Garg
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Pawan Yadav
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Aiysha Siddiq Khan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Saman Saim Rahman
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Asghar Ali
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| | - Mohan Kamthan
- Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
3
|
Chen G, Huang T, Dai Y, Huo X, Xu X. Effects of POPs-induced SIRT6 alteration on intestinal mucosal barrier function: A comprehensive review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117705. [PMID: 39805197 DOI: 10.1016/j.ecoenv.2025.117705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
Persistent organic pollutants (POPs) are pervasive organic chemicals with significant environmental and ecological ramifications, extending to adverse human health effects due to their toxicity and persistence. The intestinal mucosal barrier, a sophisticated defense mechanism comprising the epithelial layer, mucosal chemistry, and cellular immunity, shields the host from external threats and fosters a symbiotic relationship with intestinal bacteria. Sirtuin 6 (SIRT6), a sirtuin family member, is pivotal in genome and telomere stability, inflammation regulation, and metabolic processes. Result shows POPs have been implicated in the intestinal diseases, particularly in intestinal barrier dysfunction, through mechanisms such as cellular damage, epigenetic alterations, inflammation, microbiota changes, and metabolic disruptions. While the impact of SIRT6 expression changes on intestinal barrier functions has been reviewed, the mechanisms linking POPs to SIRT6 remain elusive. This review summarized the latest research results on the effects of POPs on intestinal barrier, discussed the role of SIRT6 from multiple mechanism perspectives, proposed new research directions on POPs, SIRT6 and intestinal health, and explored the therapeutic potential of SIRT6.
Collapse
Affiliation(s)
- Guangcan Chen
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Tengyang Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Digestive Surgery, the First Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong 515000, China
| | - Yifeng Dai
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Global Public Health and Bioethics, Julius Center for Health Sciences and Primary Care, University Medical Centre Utrecht, the Netherlands
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangdong, Guangzhou 511443, China
| | - Xijin Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou, Guangdong 515041, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong 515041, China.
| |
Collapse
|
4
|
Sandys O, Stokkers PCF, Te Velde AA. DAMP-ing IBD: Extinguish the Fire and Prevent Smoldering. Dig Dis Sci 2025; 70:49-73. [PMID: 38963463 PMCID: PMC11761125 DOI: 10.1007/s10620-024-08523-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 07/05/2024]
Abstract
In inflammatory bowel diseases (IBD), the most promising therapies targeting cytokines or immune cell trafficking demonstrate around 40% efficacy. As IBD is a multifactorial inflammation of the intestinal tract, a single-target approach is unlikely to solve this problem, necessitating an alternative strategy that addresses its variability. One approach often overlooked by the pharmaceutically driven therapeutic options is to address the impact of environmental factors. This is somewhat surprising considering that IBD is increasingly viewed as a condition heavily influenced by such factors, including diet, stress, and environmental pollution-often referred to as the "Western lifestyle". In IBD, intestinal responses result from a complex interplay among the genetic background of the patient, molecules, cells, and the local inflammatory microenvironment where danger- and microbe-associated molecular patterns (D/MAMPs) provide an adjuvant-rich environment. Through activating DAMP receptors, this array of pro-inflammatory factors can stimulate, for example, the NLRP3 inflammasome-a major amplifier of the inflammatory response in IBD, and various immune cells via non-specific bystander activation of myeloid cells (e.g., macrophages) and lymphocytes (e.g., tissue-resident memory T cells). Current single-target biological treatment approaches can dampen the immune response, but without reducing exposure to environmental factors of IBD, e.g., by changing diet (reducing ultra-processed foods), the adjuvant-rich landscape is never resolved and continues to drive intestinal mucosal dysregulation. Thus, such treatment approaches are not enough to put out the inflammatory fire. The resultant smoldering, low-grade inflammation diminishes physiological resilience of the intestinal (micro)environment, perpetuating the state of chronic disease. Therefore, our hypothesis posits that successful interventions for IBD must address the complexity of the disease by simultaneously targeting all modifiable aspects: innate immunity cytokines and microbiota, adaptive immunity cells and cytokines, and factors that relate to the (micro)environment. Thus the disease can be comprehensively treated across the nano-, meso-, and microscales, rather than with a focus on single targets. A broader perspective on IBD treatment that also includes options to adapt the DAMPing (micro)environment is warranted.
Collapse
Affiliation(s)
- Oliver Sandys
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands
| | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, AmsterdamUMC, AGEM, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
5
|
Hos C, Tebbens M, Bezema T, Bosch JA, Kraneveld AD, Spooren CEGM, de Haas MC, Stokkers PCF, Duijvestein M, Bouma G, Te Velde AA. Using Participatory Narrative Inquiry to Assess Experiences and Self-Experimentation with Diet Interventions in Inflammatory Bowel Disease Patients. Nutrients 2024; 16:4027. [PMID: 39683421 DOI: 10.3390/nu16234027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
BACKGROUND AND AIMS To improve quality of life (QoL), patients with inflammatory bowel diseases (Crohn's disease and ulcerative colitis) often self-experiment with lifestyle changes such as dietary modifications. The nature (e.g., type of interventions, expectations, perceived efficacy) of these single-subject experiments has not been systematically investigated. METHOD We used Participatory Narrative Inquiry (PNI), a structured qualitative method, to obtain information about these experiments through patient stories. RESULTS We demonstrate that PNI can be a method to collect and analyze IBD patient ideas and experiences regarding lifestyle and nutritional factors in a structured manner to reveal valuable insights for personal and scientific follow-up research. Patients report rest, (psychological) balance, and a change in diet when describing times when they experienced a better QoL. When focusing on diet, patients reported a considerable number of food products that were experienced as beneficial by one person but detrimental by another. CONCLUSIONS PNI is a suitable method to obtain information about self-experimentation. An insight that was attained was that personalized (dietary) guidance that supports the individual is needed.
Collapse
Affiliation(s)
- Celine Hos
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Merel Tebbens
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
| | - Tjitske Bezema
- Immunowell Foundation, 3947 NZ Langbroek, The Netherlands
| | - Jos A Bosch
- Department of Psychology, University of Amsterdam, 1018 WS Amsterdam, The Netherlands
- Department of Medical Psychology, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Department of Pharmaceutical Sciences Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
| | - Corinne E G M Spooren
- Department of Internal Medicine, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
- Division of Gastroenterology-Hepatology, Maastricht University Medical Centre, 6229 HX Maastricht, The Netherlands
| | | | - Pieter C F Stokkers
- Department of Gastroenterology and Hepatology, OLVG West, 1061 AE Amsterdam, The Netherlands
| | - Marjolijn Duijvestein
- Department of Gastroenterology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Gerd Bouma
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, 1081 HV Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| | - Anje A Te Velde
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Meibergdreef 69-71, 1105 BK Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
6
|
Khani N, Noorkhajavi G, Reziabad RH, Rad AH, Ziavand M. Postbiotics as Potential Detoxification Tools for Mitigation of Pesticides. Probiotics Antimicrob Proteins 2024; 16:1427-1439. [PMID: 37934379 DOI: 10.1007/s12602-023-10184-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/17/2023] [Indexed: 11/08/2023]
Abstract
Pesticides possess a pivotal role in the realm of agriculture and food manufacturing, as they effectively manage the proliferation of weeds, insects, plant pathogens, and microbial contaminations. They are valuable in some ways, but if misused, they can cause health issues like cancer, reproductive toxicity, neurological illnesses, and endocrine system disturbances. In this regard, practical methods for reducing pesticide residue in food should be used. For reducing pesticide residue in food processing, some strategies have been suggested. Recent research has been done on detoxification processes, including microorganisms like probiotics and their metabolites. The term "postbiotics" describes soluble substances, such as peptides, enzymes, teichoic acids, muropeptides generated from peptidoglycans, polysaccharides, proteins, and organic acids that are secreted by living bacteria or released after bacterial lysis. Due to their distinct chemical makeup, safe dosage guidelines, lengthy shelf lives, and presence of various signaling molecules that may have antioxidant, anti-inflammatory, anti-obesogenic, immunomodulatory, anti-hypertensive, and immunomodulatory effects, these postbiotics have attracted interest. They also can detoxify heavy metals, mycotoxins, and pesticides. Hydrolytic enzymes have been proposed as a potential mechanism for pesticide degradation. Postbiotics can also reduce reactive oxygen species production, enhance gastrointestinal barrier function, reduce inflammation, and modulate host xenobiotic metabolism. This review highlights pesticide residues in food products, definitions and safety aspect of postbiotics, as well as their biological role in detoxification of pesticides and the protective role of these compounds against the adverse effects of pesticides.
Collapse
Affiliation(s)
- Nader Khani
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| | - Ghasem Noorkhajavi
- Department of Medical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Hazrati Reziabad
- Student Research Committee, Department of Food Science and Technology., National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran.
| | - Mohammadreza Ziavand
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Nutrition, Tabriz, Iran
| |
Collapse
|
7
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
8
|
Ghozal M, Kadawathagedara M, Delvert R, Divaret-Chauveau A, Raherison C, Varraso R, Bédard A, Crépet A, Sirot V, Charles MA, Adel-Patient K, de Lauzon-Guillain B. Prenatal dietary exposure to mixtures of chemicals is associated with allergy or respiratory diseases in children in the ELFE nationwide cohort. Environ Health 2024; 23:5. [PMID: 38195595 PMCID: PMC10775451 DOI: 10.1186/s12940-023-01046-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 12/20/2023] [Indexed: 01/11/2024]
Abstract
INTRODUCTION Prenatal exposure to environmental chemicals may be associated with allergies later in life. We aimed to examine the association between prenatal dietary exposure to mixtures of chemicals and allergic or respiratory diseases up to age 5.5 y. METHODS We included 11,638 mother-child pairs from the French "Étude Longitudinale Française depuis l'Enfance" (ELFE) cohort. Maternal dietary exposure during pregnancy to eight mixtures of chemicals was previously assessed. Allergic and respiratory diseases (eczema, food allergy, wheezing and asthma) were reported by parents between birth and age 5.5 years. Associations were evaluated with adjusted logistic regressions. Results are expressed as odds ratio (OR[95%CI]) for a variation of one SD increase in mixture pattern. RESULTS Maternal dietary exposure to a mixture composed mainly of trace elements, furans and polycyclic aromatic hydrocarbons (PAHs) was positively associated with the risk of eczema (1.10 [1.05; 1.15]), this association was consistent across sensitivity analyses. Dietary exposure to one mixture of pesticides was positively associated with the risk of food allergy (1.10 [1.02; 1.18]), whereas the exposure to another mixture of pesticides was positively but slightly related to the risk of wheezing (1.05 [1.01; 1.08]). This last association was not found in all sensitivity analyses. Dietary exposure to a mixture composed by perfluoroalkyl acids, PAHs and trace elements was negatively associated with the risk of asthma (0.89 [0.80; 0.99]), this association was consistent across sensitivity analyses, except the complete-case analysis. CONCLUSION Whereas few individual chemicals were related to the risk of allergic and respiratory diseases, some consistent associations were found between prenatal dietary exposure to some mixtures of chemicals and the risk of allergic or respiratory diseases. The positive association between trace elements, furans and PAHs and the risk of eczema, and that between pesticides mixtures and food allergy need to be confirmed in other studies. Conversely, the negative association between perfluoroalkyl acids, PAHs and trace elements and the risk of asthma need to be further explored.
Collapse
Affiliation(s)
- Manel Ghozal
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France.
| | - Manik Kadawathagedara
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Rosalie Delvert
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amandine Divaret-Chauveau
- Unité d'allergologie pédiatrique, Hôpital d'enfants, CHRU de Nancy, Vandoeuvre les Nancy, France
- EA 3450 DevAH, Faculté de Médecine, Université de Lorraine, Vandoeuvre les Nancy, France
- UMR 6249 Chrono-Environnement, Université de Bourgogne Franche Comté, Besançon, France
| | - Chantal Raherison
- Inserm, Team EPICENE, Bordeaux Population Health Research Center, UMR 1219, Bordeaux University, Bordeaux, France
| | - Raphaëlle Varraso
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Annabelle Bédard
- Université Paris-Saclay, UVSQ, Université Paris-Sud, Inserm, Équipe d'Épidémiologie Respiratoire Intégrative, CESP, Villejuif, 94805, France
| | - Amélie Crépet
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Véronique Sirot
- ANSES, French Agency for Food, Environmental and Occupational Health and Safety, Risk Assessment Department, Methodology and Studies Unit, Maisons-Alfort, France
| | - Marie Aline Charles
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| | - Karine Adel-Patient
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), Gif-sur-Yvette, France
| | - Blandine de Lauzon-Guillain
- Université Paris Cité and Université Sorbonne Paris Nord, Inserm, INRAE, Centre for Research in Epidemiology and StatisticS (CRESS) Equipe EAROH, Batiment Leriche, 16 avenue Paul Vaillant Couturier, Paris, Villejuif Cedex, 94807, France
| |
Collapse
|
9
|
Ma J, Wan Y, Song L, Wang L, Wang H, Li Y, Huang D. Polystyrene nanobeads exacerbate chronic colitis in mice involving in oxidative stress and hepatic lipid metabolism. Part Fibre Toxicol 2023; 20:49. [PMID: 38110964 PMCID: PMC10726634 DOI: 10.1186/s12989-023-00560-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Nanoplastics (NPs) are omnipresent in our lives as a new type of pollution with a tiny size. It can enter organisms from the environment, accumulate in the body, and be passed down the food chain. Inflammatory bowel disease (IBD) is a nonspecific intestinal inflammatory disease that is recurrent and prevalent in the population. Given that the intestinal features of colitis may affect the behavior and toxicity of NPs, it is imperative to clarify the risk and toxicity mechanisms of NPs in colitis models. METHODS AND RESULTS In this study, mice were subjected to three cycles of 5-day dextran sulfate sodium (DSS) exposures, with a break of 7 to 11 days between each cycle. After the first cycle of DSS exposure, the mice were fed gavagely with water containing 100 nm polystyrene nanobeads (PS-NPs, at concentrations of 1 mg/kg·BW, 5 mg/kg·BW and 25 mg/kg·BW, respectively) for 28 consecutive days. The results demonstrated that cyclic administration of DSS induced chronic inflammation in mice, while the standard drug "5-aminosalicylic acid (5-ASA)" treatment partially improved colitis manifestations. PS-NPs exacerbated intestinal inflammation in mice with chronic colitis by activating the MAPK signaling pathway. Furthermore, PS-NPs aggravated inflammation, oxidative stress, as well as hepatic lipid metabolism disturbance in the liver of mice with chronic colitis. CONCLUSION PS-NPs exacerbate intestinal inflammation and injury in mice with chronic colitis. This finding highlights chronically ill populations' susceptibility to environmental hazards, which urgent more research and risk assessment studies.
Collapse
Affiliation(s)
- Juan Ma
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yin Wan
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Lingmin Song
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Luchen Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Huimei Wang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Yingzhi Li
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China
| | - Danfei Huang
- State Key Laboratory of Food Science and Resources, International Institute of Food Innovation, China-Canada Joint Lab of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.
| |
Collapse
|
10
|
Radak M, Fallahi H. Zbp1 gene: a modulator of multiple aging hallmarks as potential therapeutic target for age-related diseases. Biogerontology 2023; 24:831-844. [PMID: 37199888 DOI: 10.1007/s10522-023-10039-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
The Zbp1 gene has recently emerged as a potential therapeutic target for age-related diseases. Multiple studies have reported that Zbp1 plays a key role in regulating several aging hallmarks, including cellular senescence, chronic inflammation, DNA damage response, and mitochondrial dysfunction. Regarding cellular senescence, Zbp1 appears to regulate the onset and progression of senescence by controlling the expression of key markers such as p16INK4a and p21CIP1/WAF1. Similarly, evidence suggests that Zbp1 plays a role in regulating inflammation by promoting the production of pro-inflammatory cytokines, such as IL-6 and IL-1β, through activation of the NLRP3 inflammasome. Furthermore, Zbp1 seems to be involved in the DNA damage response, coordinating the cellular response to DNA damage by regulating the expression of genes such as p53 and ATM. Additionally, Zbp1 appears to regulate mitochondrial function, which is crucial for energy production and cellular homeostasis. Given the involvement of Zbp1 in multiple aging hallmarks, targeting this gene represents a potential strategy to prevent or treat age-related diseases. For example, inhibiting Zbp1 activity could be a promising approach to reduce cellular senescence and chronic inflammation, two critical hallmarks of aging associated with various age-related diseases. Similarly, modulating Zbp1 expression or activity could also improve DNA damage response and mitochondrial function, thus delaying or preventing the development of age-related diseases. Overall, the Zbp1 gene appears to be a promising therapeutic target for age-related diseases. In the current review, we have discussed the molecular mechanisms underlying the involvement of Zbp1 in aging hallmarks and proposed to develop effective strategies to target this gene for therapeutic purposes.
Collapse
Affiliation(s)
- Mehran Radak
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran
| | - Hossein Fallahi
- Department of Biology, School of Sciences, Razi University, Baq-e-Abrisham, Kermanshah, 6714967346, Islamic Republic of Iran.
| |
Collapse
|
11
|
Zarus GM, Muianga C, Brenner S, Stallings K, Casillas G, Pohl HR, Mumtaz MM, Gehle K. Worker studies suggest unique liver carcinogenicity potential of polyvinyl chloride microplastics. Am J Ind Med 2023; 66:1033-1047. [PMID: 37742097 PMCID: PMC10841875 DOI: 10.1002/ajim.23540] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Plastic debris pervades our environment. Some breaks down into microplastics (MPs) that can enter and distribute in living organisms causing effects in multiple target organs. MPs have been demonstrated to harm animals through environmental exposure. Laboratory animal studies are still insufficient to evaluate human impact. And while MPs have been found in human tissues, the health effects at environmental exposure levels are unclear. AIM We reviewed and summarized existing evidence on health effects from occupational exposure to MPs. Additionally, the diverse effects documented for workers were organized by MP type and associated co-contaminants. Evidence of the unique effects of polyvinyl chloride (PVC) on liver was then highlighted. METHODS We conducted two stepwise online literature reviews of publications focused on the health risks associated with occupational MP exposures. This information was supplemented with findings from animal studies. RESULTS Our analysis focused on 34 published studies on occupational health effects from MP exposure with half involving exposure to PVC and the other half a variety of other MPs to compare. Liver effects following PVC exposure were reported for workers. While PVC exposure causes liver toxicity and increases the risk of liver cancers, including angiosarcomas and hepatocellular carcinomas, the carcinogenic effects of work-related exposure to other MPs, such as polystyrene and polyethylene, are not well understood. CONCLUSION The data supporting liver toxicity are strongest for PVC exposure. Overall, the evidence of liver toxicity from occupational exposure to MPs other than PVC is lacking. The PVC worker data summarized here can be useful in assisting clinicians evaluating exposure histories from PVC exposure and designing future cell, animal, and population exposure-effect research studies.
Collapse
Affiliation(s)
- Gregory M Zarus
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - Custodio Muianga
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - Stephan Brenner
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - Katie Stallings
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - Gaston Casillas
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - Hana R Pohl
- Agency for Toxic Substances and Disease Registry, Office of Innovation and Analytics, Atlanta, Georgia, USA
| | - M Moiz Mumtaz
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director of Science, Atlanta, Georgia, USA
| | - Kimberly Gehle
- Agency for Toxic Substances and Disease Registry, Office of the Associate Director of Science, Atlanta, Georgia, USA
| |
Collapse
|
12
|
Ogulur I, Yazici D, Pat Y, Bingöl EN, Babayev H, Ardicli S, Heider A, Rückert B, Sampath V, Dhir R, Akdis M, Nadeau K, Akdis CA. Mechanisms of gut epithelial barrier impairment caused by food emulsifiers polysorbate 20 and polysorbate 80. Allergy 2023; 78:2441-2455. [PMID: 37530764 DOI: 10.1111/all.15825] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/19/2023] [Accepted: 07/05/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND The rising prevalence of many chronic diseases related to gut barrier dysfunction coincides with the increased global usage of dietary emulsifiers in recent decades. We therefore investigated the effect of the frequently used food emulsifiers on cytotoxicity, barrier function, transcriptome alterations, and protein expression in gastrointestinal epithelial cells. METHODS Human intestinal organoids originating from induced pluripotent stem cells, colon organoid organ-on-a-chip, and liquid-liquid interface cells were cultured in the presence of two common emulsifiers: polysorbate 20 (P20) and polysorbate 80 (P80). The cytotoxicity, transepithelial electrical resistance (TEER), and paracellular-flux were measured. Immunofluorescence staining of epithelial tight-junctions (TJ), RNA-seq transcriptome, and targeted proteomics were performed. RESULTS Cells showed lysis in response to P20 and P80 exposure starting at a 0.1% (v/v) concentration across all models. Epithelial barrier disruption correlated with decreased TEER, increased paracellular-flux and irregular TJ immunostaining. RNA-seq and targeted proteomics analyses demonstrated upregulation of cell development, signaling, proliferation, apoptosis, inflammatory response, and response to stress at 0.05%, a concentration lower than direct cell toxicity. A proinflammatory response was characterized by the secretion of several cytokines and chemokines, interaction with their receptors, and PI3K-Akt and MAPK signaling pathways. CXCL5, CXCL10, and VEGFA were upregulated in response to P20 and CXCL1, CXCL8 (IL-8), CXCL10, LIF in response to P80. CONCLUSIONS The present study provides direct evidence on the detrimental effects of food emulsifiers P20 and P80 on intestinal epithelial integrity. The underlying mechanism of epithelial barrier disruption was cell death at concentrations between 1% and 0.1%. Even at concentrations lower than 0.1%, these polysorbates induced a proinflammatory response suggesting a detrimental effect on gastrointestinal health.
Collapse
Affiliation(s)
- Ismail Ogulur
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Duygu Yazici
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Yagiz Pat
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Elif Naz Bingöl
- Department of Bioengineering, Institute of Pure and Applied Sciences, Marmara University, Istanbul, Turkey
| | - Huseyn Babayev
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Sena Ardicli
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Anja Heider
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Beate Rückert
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Vanitha Sampath
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, California, USA
| | - Raja Dhir
- SEED Inc. Co., Los Angeles, California, USA
| | - Mubeccel Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
| | - Kari Nadeau
- Department of Environmental Health, T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research (SIAF), University of Zurich, Davos, Switzerland
- Christine Kühne-Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| |
Collapse
|
13
|
Anetor GO, Nwobi NL, Igharo GO, Sonuga OO, Anetor JI. Environmental Pollutants and Oxidative Stress in Terrestrial and Aquatic Organisms: Examination of the Total Picture and Implications for Human Health. Front Physiol 2022; 13:931386. [PMID: 35936919 PMCID: PMC9353710 DOI: 10.3389/fphys.2022.931386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
There is current great international concern about the contribution of environmental pollution to the global burden of disease particularly in the developing, low- and medium-income countries. Industrial activities, urbanization, developmental projects as well as various increased anthropogenic activities involving the improper generation, management and disposal of pollutants have rendered today's environment highly polluted with various pollutants. These pollutants include toxic metals (lead, cadmium, mercury, arsenic), polycyclic aromatic hydrocarbons, polychlorinated biphenyls, pesticides and diesel exhaust particles most of which appear to be ubiquitous as well as have long-term environmental persistence with a wide range of toxicities such as oxidative stress among others. Oxidative stress, which may arise from increased production of damaging free radicals emanating from increased pollutant burden and depressed bioavailability of antioxidant defenses causes altered biochemical and physiological mechanisms and has been implicated in all known human pathologies most of which are chronic. Oxidative stress also affects both flora and fauna and plants are very important components of the terrestrial environment and significant contributors of nutrients for both man and animals. It is also remarkable that the aquatic environment in which sea animals and creatures are resident is also highly polluted, leading to aquatic stress that may affect the survival of the aquatic animals, sharing in the oxidative stress. These altered terrestrial and aquatic environments have an overarching effect on human health. Antioxidants neutralize the damaging free radicals thus, they play important protective roles in the onset, progression and severity of the unmitigated generation of pollutants that ultimately manifest as oxidative stress. Consequently, human health as well as that of aquatic and terrestrial organisms may be protected from environmental pollution by mitigating oxidative stress and employing the principles of nutritional medicine, essentially based on antioxidants derived mainly from plants, which serve as the panacea of the vicious state of environmental pollutants consequently, the health of the population. Understanding the total picture of oxidative stress and integrating the terrestrial and aquatic effects of environmental pollutants are central to sustainable health of the population and appear to require multi-sectoral collaborations from diverse disciplinary perspectives; basically the environmental, agricultural and health sectors.
Collapse
Affiliation(s)
- Gloria Oiyahumen Anetor
- Department of Human Kinetics and Health Education, National Open University of Nigeria, Abuja, Nigeria
| | - Nnenna Linda Nwobi
- Department of Chemical Pathology, BenCarson School of Medicine, Babcock University, Ilishan, Nigeria
| | - Godwin Osaretin Igharo
- Department of Medical Laboratory Science, School of Basic Medical Sciences, College of Medical Sciences, University of Benin, Benin, Nigeria
| | | | - John Ibhagbemien Anetor
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|