1
|
Adhikari P, Uprety S, Feigl B, Zele AJ. Melanopsin-mediated amplification of cone signals in the human visual cortex. Proc Biol Sci 2024; 291:20232708. [PMID: 38808443 PMCID: PMC11285915 DOI: 10.1098/rspb.2023.2708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
The ambient daylight variation is coded by melanopsin photoreceptors and their luxotonic activity increases towards midday when colour temperatures are cooler, and irradiances are higher. Although melanopsin and cone photoresponses can be mediated via separate pathways, the connectivity of melanopsin cells across all levels of the retina enables them to modify cone signals. The downstream effects of melanopsin-cone interactions on human vision are however, incompletely understood. Here, we determined how the change in daytime melanopsin activation affects the human cone pathway signals in the visual cortex. A 5-primary silent-substitution method was developed to evaluate the dependence of cone-mediated signals on melanopsin activation by spectrally tuning the lights and stabilizing the rhodopsin activation under a constant cone photometric luminance. The retinal (white noise electroretinogram) and cortical responses (visual evoked potential) were simultaneously recorded with the photoreceptor-directed lights in 10 observers. By increasing the melanopsin activation, a reverse response pattern was observed with cone signals being supressed in the retina by 27% (p = 0.03) and subsequently amplified by 16% (p = 0.01) as they reach the cortex. We infer that melanopsin activity can amplify cone signals at sites distal to retinal bipolar cells to cause a decrease in the psychophysical Weber fraction for cone vision.
Collapse
Affiliation(s)
- Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
- Queensland Eye Institute, Brisbane, Queensland 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, Queensland 4059, Australia
| |
Collapse
|
2
|
Martin JT, Boynton GM, Baker DH, Wade AR, Spitschan M. PySilSub: An open-source Python toolbox for implementing the method of silent substitution in vision and nonvisual photoreception research. J Vis 2023; 23:10. [PMID: 37450287 PMCID: PMC10353748 DOI: 10.1167/jov.23.7.10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 06/11/2023] [Indexed: 07/18/2023] Open
Abstract
The normal human retina contains several classes of photosensitive cell-rods for low-light vision, three cone classes for daylight vision, and intrinsically photosensitive retinal ganglion cells (ipRGCs) expressing melanopsin for non-image-forming functions, including pupil control, melatonin suppression, and circadian photoentrainment. The spectral sensitivities of the photoreceptors overlap significantly, which means that most lights will stimulate all photoreceptors to varying degrees. The method of silent substitution is a powerful tool for stimulating individual photoreceptor classes selectively and has found much use in research and clinical settings. The main hardware requirement for silent substitution is a spectrally calibrated light stimulation system with at least as many primaries as there are photoreceptors under consideration. Device settings that will produce lights to selectively stimulate the photoreceptor(s) of interest can be found using a variety of analytic and algorithmic approaches. Here we present PySilSub (https://github.com/PySilentSubstitution/pysilsub), a novel Python package for silent substitution featuring flexible support for individual colorimetric observer models (including human and mouse observers), multiprimary stimulation devices, and solving silent substitution problems with linear algebra and constrained numerical optimization. The toolbox is registered with the Python Package Index and includes example data sets from various multiprimary systems. We hope that PySilSub will facilitate the application of silent substitution in research and clinical settings.
Collapse
Affiliation(s)
- Joel T Martin
- Department of Psychology, University of York, York, UK
| | | | - Daniel H Baker
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Alex R Wade
- Department of Psychology, University of York, York, UK
- York Biomedical Research Institute, University of York, York, UK
| | - Manuel Spitschan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- TUM Department of Sport and Health Sciences (TUM SG), Technical University of Munich, Munich, Germany
- TUM Institute for Advanced Study (TUM-IAS), Technical University of Munich, Garching, Germany
| |
Collapse
|
3
|
Nugent TW, Zele AJ. A five-primary Maxwellian-view display for independent control of melanopsin, rhodopsin, and three-cone opsins on a fine spatial scale. J Vis 2022; 22:20. [DOI: 10.1167/jov.22.12.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Thomas W. Nugent
- Center for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Andrew J. Zele
- Center for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
4
|
Uprety S, Adhikari P, Feigl B, Zele AJ. Melanopsin photoreception differentially modulates rod-mediated and cone-mediated human temporal vision. iScience 2022; 25:104529. [PMID: 35754721 PMCID: PMC9218364 DOI: 10.1016/j.isci.2022.104529] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/04/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022] Open
Abstract
To evaluate the nature of interactions between visual pathways transmitting the slower melanopsin and faster rod and cone signals, we implement a temporal phase summation paradigm in human observers using photoreceptor-directed stimuli. We show that melanopsin stimulation interacts with and alters both rod-mediated and cone-mediated vision regardless of whether it is perceptually visible or not. Melanopsin-rod interactions result in either inhibitory or facilitatory summation depending on the temporal frequency and photoreceptor pathway contrast sensitivity. Moreover, by isolating rod vision, we reveal a bipartite intensity response property of the rod pathway in photopic lighting that extends its operational range at lower frequencies to beyond its classic saturation limits but at the expense of attenuating sensitivity at higher frequencies. In comparison, melanopsin-cone interactions always lead to facilitation. These interactions can be described by linear or probability summations and potentially involve multiple intraretinal and visual cortical pathways to set human visual contrast sensitivity. Melanopsin ipRGCs support vision independent of the rod and cone signals Rod pathways mediate robust visual responses in daylight Temporal contrast sensitivity is contingent on the melanopsin excitation level Visual performance is collectively regulated by melanopsin, rod and cone pathways
Collapse
Affiliation(s)
- Samir Uprety
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Prakash Adhikari
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Beatrix Feigl
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,Queensland Eye Institute, Brisbane, QLD 4101, Australia
| | - Andrew J Zele
- Centre for Vision and Eye Research, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia.,School of Optometry and Vision Science, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
5
|
Uprety S, Zele AJ, Feigl B, Cao D, Adhikari P. Optimizing methods to isolate melanopsin-directed responses. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2021; 38:1051-1064. [PMID: 34263761 DOI: 10.1364/josaa.423343] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 06/01/2021] [Indexed: 06/13/2023]
Abstract
The intrinsic melanopsin photoresponse may initiate visual signals that differ in spatiotemporal characteristics from the cone-opsin- and rhodopsin-mediated signals. Applying the CIE standard observer functions in silent-substitution methods can require individual differences in photoreceptor spectral sensitivities and pre-receptoral filtering to be corrected; failure to do so can lead to the intrusion of more sensitive cone processes with putative melanopsin-directed stimuli. Here we evaluate heterochromatic flicker photometry (HFP) and photoreceptor-directed temporal white noise as techniques to limit the effect of these individual differences. Individualized luminous efficiency functions (V(λ)) were compared to the CIE standard observer functions. We show that adapting chromaticities used in silent-substitution methods can deviate by up to 54% in luminance when estimated with the individual and standard observer functions. These deviations lead to inadvertent cone intrusions in the visual functions measured with melanopsin-directed stimuli. To eliminate the intrusions, individual HFP corrections are sufficient at low frequencies (∼1Hz) but temporal white noise is also required at higher frequencies to desensitize penumbral cones. We therefore recommend the selective application of individualized observer calibration and/or temporal white noise in silent-substitution paradigms when studying melanopsin-directed photoresponses.
Collapse
|
6
|
Pupil responses to hidden photoreceptor-specific modulations in movies. PLoS One 2019; 14:e0216307. [PMID: 31071113 PMCID: PMC6508665 DOI: 10.1371/journal.pone.0216307] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/17/2019] [Indexed: 11/19/2022] Open
Abstract
Under typical daytime light levels, the human pupillary light response (PLR) is driven by the activity of the L, M, and S cones, and melanopsin expressed in the so-called intrinsically photosensitive retinal ganglion cells (ipRGCs). However, the importance of each of these photoreceptive mechanisms in defining pupil size under real-world viewing conditions remains to be established. To address this question, we embedded photoreceptor-specific modulations in a movie displayed using a novel projector-based five-primary spatial stimulation system, which allowed for the precise control of photoreceptor activations in time and space. We measured the pupillary light response in eleven observers, who viewed short cartoon movies which contained hidden low-frequency (0.25 Hz) silent-substitution modulations of the L, M and S cones (no stimulation of melanopsin), melanopsin (no stimulation of L, M and S cones), both L, M, and S cones and melanopsin or no modulation at all. We find that all photoreceptors active at photopic light levels regulate pupil size under this condition. Our data imply that embedding modulations in photoreceptor contrast could provide a method to manipulate key adaptive aspects of the human visual system in everyday, real-world activities such as watching a movie.
Collapse
|
7
|
Maguire J, Parry NRA, Kremers J, Kommanapalli D, Murray IJ, McKeefry DJ. Rod Electroretinograms Elicited by Silent Substitution Stimuli from the Light-Adapted Human Eye. Transl Vis Sci Technol 2016; 5:13. [PMID: 27617180 PMCID: PMC5015991 DOI: 10.1167/tvst.5.4.13] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/16/2016] [Indexed: 11/24/2022] Open
Abstract
PURPOSE To demonstrate that silent substitution stimuli can be used to generate electroretinograms (ERGs) that effectively isolate rod photoreceptor function in humans without the need for dark adaptation, and that this approach constitutes a viable alternative to current clinical standard testing protocols. METHODS Rod-isolating and non-isolating sinusoidal flicker stimuli were generated on a 4 primary light-emitting diode (LED) Ganzfeld stimulator to elicit ERGs from participants with normal and compromised rod function who had not undergone dark-adaptation. Responses were subjected to Fourier analysis, and the amplitude and phase of the fundamental were used to examine temporal frequency and retinal illuminance response characteristics. RESULTS Electroretinograms elicited by rod-isolating silent substitution stimuli exhibit low-pass temporal frequency response characteristics with an upper response limit of 30 Hz. Responses are optimal between 5 and 8 Hz and between 10 and 100 photopic trolands (Td). There is a significant correlation between the response amplitudes obtained with the silent substitution method and current standard clinical protocols. Analysis of signal-to-noise ratios reveals significant differences between subjects with normal and compromised rod function. CONCLUSIONS Silent substitution provides an effective method for the isolation of human rod photoreceptor function in subjects with normal as well as compromised rod function when stimuli are used within appropriate parameter ranges. TRANSLATIONAL RELEVANCE This method of generating rod-mediated ERGs can be achieved without time-consuming periods of dark adaptation, provides improved isolation of rod- from cone-based activity, and will lead to the development of faster clinical electrophysiologic testing protocols with improved selectivity.
Collapse
Affiliation(s)
- John Maguire
- Bradford School of Optometry and Vision Sciences, Bradford University, UK
| | - Neil R A Parry
- Bradford School of Optometry and Vision Sciences, Bradford University, UK ; Vision Science Centre, Manchester Royal Eye Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK ; Centre for Ophthalmology and Vision Sciences, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, UK
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Germany
| | | | - Ian J Murray
- Faculty of Biology, Medicine & Health, University of Manchester, UK
| | - Declan J McKeefry
- Bradford School of Optometry and Vision Sciences, Bradford University, UK
| |
Collapse
|
8
|
Tsai TI, Atorf J, Neitz M, Neitz J, Kremers J. Rod- and cone-driven responses in mice expressing human L-cone pigment. J Neurophysiol 2015; 114:2230-41. [PMID: 26245314 DOI: 10.1152/jn.00188.2015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/03/2015] [Indexed: 12/31/2022] Open
Abstract
The mouse is commonly used for studying retinal processing, primarily because it is amenable to genetic manipulation. To accurately study photoreceptor driven signals in the healthy and diseased retina, it is of great importance to isolate the responses of single photoreceptor types. This is not easily achieved in mice because of the strong overlap of rod and M-cone absorption spectra (i.e., maxima at 498 and 508 nm, respectively). With a newly developed mouse model (Opn1lw(LIAIS)) expressing a variant of the human L-cone pigment (561 nm) instead of the mouse M-opsin, the absorption spectra are substantially separated, allowing retinal physiology to be studied using silent substitution stimuli. Unlike conventional chromatic isolation methods, this spectral compensation approach can isolate single photoreceptor subtypes without changing the retinal adaptation. We measured flicker electroretinograms in these mutants under ketamine-xylazine sedation with double silent substitution (silent S-cone and either rod or M/L-cones) and obtained robust responses for both rods and (L-)cones. Small signals were yielded in wild-type mice, whereas heterozygotes exhibited responses that were generally intermediate to both. Fundamental response amplitudes and phase behaviors (as a function of temporal frequency) in all genotypes were largely similar. Surprisingly, isolated (L-)cone and rod response properties in the mutant strain were alike. Thus the LIAIS mouse warrants a more comprehensive in vivo assessment of photoreceptor subtype-specific physiology, because it overcomes the hindrance of overlapping spectral sensitivities present in the normal mouse.
Collapse
Affiliation(s)
- Tina I Tsai
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Jenny Atorf
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Biology, Division of Animal Physiology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Maureen Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jay Neitz
- Vision Sciences, University of Washington, Seattle, Washington
| | - Jan Kremers
- Department of Ophthalmology, University Hospital Erlangen, Erlangen, Germany; Department of Anatomy II, University of Erlangen-Nürnberg, Germany; and School of Optometry and Vision Science, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
9
|
Zele AJ, Cao D. Vision under mesopic and scotopic illumination. Front Psychol 2015; 5:1594. [PMID: 25657632 PMCID: PMC4302711 DOI: 10.3389/fpsyg.2014.01594] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 12/28/2014] [Indexed: 11/21/2022] Open
Abstract
Evidence has accumulated that rod activation under mesopic and scotopic light levels alters visual perception and performance. Here we review the most recent developments in the measurement of rod and cone contributions to mesopic color perception and temporal processing, with a focus on data measured using a four-primary photostimulator method that independently controls rod and cone excitations. We discuss the findings in the context of rod inputs to the three primary retinogeniculate pathways to understand rod contributions to mesopic vision. Additionally, we present evidence that hue perception is possible under scotopic, pure rod-mediated conditions that involves cortical mechanisms.
Collapse
Affiliation(s)
- Andrew J. Zele
- Visual Science Laboratory, School of Optometry and Vision Science & Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Dingcai Cao
- Visual Perception Laboratory, Department of Ophthalmology and Visual Sciences, University of Illinois at ChicagoChicago, IL, USA
| |
Collapse
|
10
|
Park JC, Cao D, Collison FT, Fishman GA, McAnany JJ. Rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram. Doc Ophthalmol 2015; 130:111-9. [PMID: 25579805 DOI: 10.1007/s10633-015-9480-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
PURPOSE To evaluate rod and cone contributions to the dark-adapted 15-Hz flicker electroretinogram (ERG) across a broad range of stimulus luminances by comparing rod-isolating (ERGR), cone-isolating (ERGC), and non-receptor-specific (ERGR+C) responses. METHODS Dark-adapted, full-field 15-Hz ERGs were obtained from four normally sighted subjects (ages 29-36 years) using a four-primary LED-based stimulating system. The primaries were either modulated sinusoidally in phase (ERGR+C) or were modulated in counter-phase to achieve rod isolation (ERGR) or cone isolation (ERGC) by means of triple silent substitution. Measurements were made for a broad range of luminances (-2.5 to 1.8 log scot. cd/m(2) in 0.2 log unit steps). Fourier analysis was used to obtain the amplitude and phase of the fundamental response component at each stimulus luminance. RESULTS Stimulus luminance had different effects on response amplitudes and phases under the three paradigms. Specifically, ERGC amplitude and phase increased monotonically as luminance increased. The effects on ERGR+C and ERGR were complex: ERGR+C and ERGR amplitude was small and the phase decreased for low luminances, whereas amplitude and phase increased sharply at moderate luminances. For high luminances, ERGR+C amplitude and phase increased, whereas ERGR amplitude decreased and phase was approximately constant. CONCLUSIONS At low luminances, the ERGR+C and ERGR functions can be attributed to interactions between two rod pathways. At high luminances, the functions can be accounted for by interactions between rod and cone pathways (ERGR+C) or rod insensitivity (ERGR). The ERGR paradigm minimizes cone intrusion, permitting assessment of rod function over a large range of luminance levels.
Collapse
Affiliation(s)
- Jason C Park
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, 1855 W. Taylor St., Chicago, IL, 60612, USA
| | | | | | | | | |
Collapse
|
11
|
Barrionuevo PA, Nicandro N, McAnany JJ, Zele AJ, Gamlin P, Cao D. Assessing rod, cone, and melanopsin contributions to human pupil flicker responses. Invest Ophthalmol Vis Sci 2014; 55:719-27. [PMID: 24408974 DOI: 10.1167/iovs.13-13252] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE We determined the relative contributions of rods, cones, and melanopsin to pupil responses in humans using temporal sinusoidal stimulation for light levels spanning the low mesopic to photopic range. METHODS A four-primary Ganzfeld photostimulator controlled flicker stimulations at seven light levels (-2.7 to 2 log cd/m(2)) and five frequencies (0.5-8 Hz). Pupil diameter was measured using a high-resolution eye tracker. Three kinds of sinusoidal photoreceptor modulations were generated using silent substitution: rod modulation, cone modulation, and combined rod and cone modulation in phase (experiment 1) or cone phase shifted (experiment 2) from a fixed rod phase. The melanopsin excitation was computed for each condition. A vector sum model was used to estimate the relative contribution of rods, cones, and melanopsin to the pupil response. RESULTS From experiment 1, the pupil frequency response peaked at 1 Hz at two mesopic light levels for the three modulation conditions. Analyzing the rod-cone phase difference for the combined modulations (experiment 2) identified a V-shaped response amplitude with a minimum between 135° and 180°. The pupil response phases increased as cone modulation phase increased. The pupil amplitude increased with increasing light level for cone, and combined (in-phase rod and cone) modulation, but not for the rod modulation. CONCLUSIONS These results demonstrate that cone- and rod-pathway contributions are more predominant than melanopsin contribution to the phasic pupil response. The combined rod, cone, and melanopsin inputs to the phasic state of the pupil light reflex follow linear summation.
Collapse
Affiliation(s)
- Pablo A Barrionuevo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
| | | | | | | | | | | |
Collapse
|
12
|
Kremers J, Pangeni G. Electroretinographic responses to photoreceptor specific sine wave modulation. JOURNAL OF THE OPTICAL SOCIETY OF AMERICA. A, OPTICS, IMAGE SCIENCE, AND VISION 2012; 29:A306-A313. [PMID: 22330394 DOI: 10.1364/josaa.29.00a306] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Electroretinographic responses to cone and rod isolating stimuli and to simultaneous L- and M-cone modulation were measured at different temporal frequencies between 2 and 60 Hz and at two mean luminances using a four primary stimulator. The responses driven by each photoreceptor type had distinct characteristics. The responses to stimuli containing L- and/or M-cone stimulation indicated the presence of two underlying mechanisms that were active in distinct frequency regions. Between 2 and 12 Hz, the responses displayed properties that were reminiscent of the L-M-cone opponent system. At higher temporal frequencies, the electroretinograms were more determined by the luminance content in the stimuli.
Collapse
Affiliation(s)
- Jan Kremers
- Department of Ophthalmology, University of Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany. jan.kremers@uk‑erlangen.de
| | | |
Collapse
|
13
|
Isolated mesopic rod and cone electroretinograms realized with a four-primary method. Doc Ophthalmol 2011; 123:29-41. [PMID: 21701875 DOI: 10.1007/s10633-011-9279-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The purpose of this study was to evaluate the feasibility of measuring rod and cone electroretinograms (ERGs) at a single mesopic adaptation level. To accomplish this, a four-primary photostimulator was implemented using a commercially available ERG system (Diagnosys ColorDome) to generate three types of stimuli that temporally modulated rods alone, cones alone, and rods and cones simultaneously. For each stimulus type, ERGs were recorded as a function of temporal frequency (2, 4, 8, or 16 Hz) and mesopic light levels (0.02, 0.16, or 1.26 cd/m(2)) in normal observers and patients with retinitis pigmentosa (RP) or cone-rod degeneration. The normal observers ERG waveforms showed a clear periodic pattern, mirroring the sinusoidal stimuli. At all light levels, rod responses were always higher than cone responses for temporal frequencies between 2 and 8 Hz, suggesting that rods dominated the responses. Cone responses were minimal at the lowest light level and increased with increases in light level. The amplitude of the response to the combined stimuli was intermediate between that of the isolated cone and the isolated rod stimuli for all light levels. Good receptoral isolation was confirmed by the results showing (1) minimal or no rod ERGs but recordable cone ERGs in the patients and (2) high correlation between the ERG amplitudes obtained from the four-primary method and those from the ISCEV standard clinical protocol in normal observers.
Collapse
|
14
|
Abstract
The electroretinographic response to L- and M-cone isolating stimuli was measured at different luminance levels to study the effect of retinal illuminance on amplitude and phase, and how this may influence estimates of L:M ratios in the retina. It was found that the amplitude of L- and M-cone driven responses increases differently with increasing retinal illuminance: L-cone responses increase more quickly than those of M-cones. The L:M ratio does not change strongly with retinal illuminance. The phase of both L- and M-cone driven responses advances with increasing retinal illuminance. There is considerable interindividual variability in the phase difference between the two, but generally M-cone driven responses are phase advanced.
Collapse
|
15
|
Challa NK, McKeefry D, Parry NRA, Kremers J, Murray IJ, Panorgias A. L- and M-cone input to 12Hz and 30Hz flicker ERGs across the human retina. Ophthalmic Physiol Opt 2010; 30:503-10. [PMID: 20883333 DOI: 10.1111/j.1475-1313.2010.00758.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recorded L- and M-cone isolating ERGs from human subjects using a silent substitution technique at temporal rates of 12 and 30 Hz. These frequencies isolate the activity of cone-opponent and non-opponent post-receptoral mechanisms, respectively. ERGs were obtained using a sequence of stimuli with different spatial configurations comprising; (1) circular stimuli of different sizes which increased in 10° steps up to 70°diameter, or (2) annular stimuli with a 70° outer diameter but with different sized central ablations from 10° up to 60°. L- and M-cone isolating ERGs were obtained from five colour normal subjects using a DTL fibre electrode. Fourier analysis of the ERGs was performed and we measured the amplitude of the first harmonic of the response. For 12 Hz ERGs the L:M cone response amplitude ratio (L:M(ERG)) was close to unity and remained stable irrespective of the spatial configuration of the stimulus. The maintenance of this balanced ratio points to the existence of cone selective input across the human retina for the L-M cone opponent mechanism. For 30 Hz the L:M(ERG) ratio was greater than unity but varied depending upon which region of the retina was being stimulated. This variation we consider to be a consequence of the global response properties of M-cone ERGs rather than representing a real variation in L:M cone ratios across the retina.
Collapse
Affiliation(s)
- N K Challa
- Bradford School of Optometry and Vision Sciences, University of Bradford, UK
| | | | | | | | | | | |
Collapse
|